首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   36篇
  国内免费   79篇
测绘学   10篇
大气科学   8篇
地球物理   61篇
地质学   133篇
海洋学   157篇
综合类   6篇
自然地理   38篇
  2024年   1篇
  2023年   3篇
  2022年   14篇
  2021年   18篇
  2020年   14篇
  2019年   13篇
  2018年   19篇
  2017年   10篇
  2016年   10篇
  2015年   6篇
  2014年   14篇
  2013年   20篇
  2012年   21篇
  2011年   14篇
  2010年   6篇
  2009年   13篇
  2008年   17篇
  2007年   27篇
  2006年   12篇
  2005年   10篇
  2004年   16篇
  2003年   9篇
  2002年   15篇
  2001年   7篇
  2000年   5篇
  1999年   7篇
  1998年   15篇
  1997年   14篇
  1996年   10篇
  1995年   9篇
  1994年   7篇
  1993年   11篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   10篇
  1987年   2篇
  1986年   2篇
  1983年   2篇
  1954年   1篇
排序方式: 共有413条查询结果,搜索用时 15 毫秒
371.
Swath MR1 data from the remnant Colville and active Kermadec arc margins, south of 33°30 S (SW Pacific), record the structural morphology and evolution of the rifted, and now separate portions, of the proto-Colville–Kermadec arc flanking the actively widening southern Havre Trough back-arc basin associated with Pacific-Australian plate convergence. Both the remnant Colville and active Kermadec arc margins comprise opposing, asymmetric, partially basement exposed, segmented ridges. Differences in morphology between the two ridges are, however, observed. The single, near linear, border fault system, with relief of 1000 m, along the western edge of the Kermadec margin is interpreted to be the exposed fault escarpment of a major, west-dipping, detachment fault. In contrast, two major zig-zag border fault systems along the eastern edge of the Colville Ridge, bounding a back-tilted ridge flank terrace, are interpreted as major antithetic faults between the remnant arc and back-arc region. This contrast in structural morphology coincides with, respectively, lesser and greater degrees of both active tectonism and channel-canyon erosion, on the remnant Colville and active Kermadec margins. These differences are interpreted to reflect the progressive trenchward collapse and associated greater rift flank uplift and incisive erosion of the Kermadec foot-wall contrasting with the non-collapse and relatively lesser rift flank uplift and ridge erosion of the Colville hanging-wall. The data provide further constraints on the early evolution of the Havre Trough in particular, and back-arc basins in general.  相似文献   
372.
Omphacite breakdown reactions and relation to eclogite exhumation rates   总被引:1,自引:0,他引:1  
Clinopyroxene + plagioclase (±Hbl ± Qtz) symplectites after omphacite are widely cited as evidence for prior eclogite-facies or high-pressure (HP) metamorphism. Precursor omphacite compositions of retrograde eclogites, used for reconstructing retrograde PT paths, are commonly estimated by reintegrating symplectite phases with the assumption that the symplectite-forming reactions were isochemical. Comparisons of broadbeam symplectite compositions to adjacent unreacted pyroxene from various symplectites after clinopyroxene from the Appalachian Blue Ridge (ABR) and Western Gneiss Region (WGR) suggest that the symplectite forming reactions are largely isochemical. Endmember calculations based on reintegrated symplectite compositions from the ABR and WGR suggest that a minor Ca-Eskola (CaEs) component (XCaEs = 0.04–0.15) was present in precursor HP clinopyroxene. WGR symplectites consist of fine-grained (∼1 μm-scale), vermicular intergrowths of Pl + Cpx II ± Hbl that occur at grain boundaries or internally. ABR symplectites contain coarser (∼10 μm-scale) planar lamellae and rods of Pl + Cpx II + Qtz + Hbl within clinopyroxene cores. The contrasting textures correlate with decompression and cooling rate, and degree of overstepping of the retrograde reaction (lamellar: slow, erosionally controlled exhumation with slow/low overstepping; fine-grained, grainboundary symplectite: rapid, tectonic exhumation with rapid/high overstepping). Variations in XCaEs, Xjd, and XCaTs of precursor HP omphacite are related to the symplectic mineral assemblages that result from decompression. Quartz-normative symplectities indicate quartz-producing retrograde reactions (e.g., breakdown of precursor CaEs); quartz-free symplectities (e.g., diopside + plagioclase after omphacite) indicate quartz-consuming reactions (jd, CaTs breakdown) outpaced quartz-producing reactions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
373.
Abstract The prograde metamorphism of eclogites is typically obscured by chemical equilibration at peak conditions and by partial requilibration during retrograde metamorphism. Eclogites from the Eastern Blue Ridge of North Carolina retain evidence of their prograde path in the form of inclusions preserved in garnet. These eclogites, from the vicinity of Bakersville, North Carolina, USA are primarily comprised of garnet–clinopyroxene–rutile–hornblende–plagioclase–quartz. Quartz, clinopyroxene, hornblende, rutile, epidote, titanite and biotite are found as inclusions in garnet cores. Included hornblende and clinopyroxene are chemically distinct from their matrix counterparts. Thermobarometry of inclusion sets from different garnets record different conditions. Inclusions of clinozoisite, titanite, rutile and quartz (clinozoisite + titanite = grossular + rutile + quartz + H2O) yield pressures (6–10 kbar, 400–600 °C and 8–12 kbar 450–680 °C) at or below the minimum peak conditions from matrix phases (10–13 kbar at 600–800 °C). Inclusions of hornblende, biotite and quartz give higher pressures (13–16 kbar and 630–660 °C). Early matrix pyroxene is partially or fully broken down to a diopside–plagioclase symplectite, and both garnet and pyroxene are rimmed with plagioclase and hornblende. Hypersthene is found as a minor phase in some diopside + plagioclase symplectites, which suggests retrogression through the granulite facies. Two‐pyroxene thermometry of this assemblage gives a temperature of c. 750 °C. Pairing the most Mg‐rich garnet composition with the assemblage plagioclase–diopside–hypersthene–quartz gives pressures of 14–16 kbar at this temperature. The hornblende–plagioclase–garnet rim–quartz assemblage yields 9–12 kbar and 500–550 °C. The combined P–T data show a clockwise loop from the amphibolite to eclogite to granulite facies, all of which are overprinted by a texturally late amphibolite facies assemblage. This loop provides an unusually complete P–T history of an eclogite, recording events during and following subduction and continental collision in the early Palaeozoic.  相似文献   
374.
Hydrothermal vent fluids were collected from the Lucky Strike site at 37°17′N on the Mid-Atlantic Ridge in both 1993 and 1996. Seven vents were sampled with the DSV Alvin in 1993 and six vents were sampled in 1996 using the ROV Jason during the LUSTRE '96 Cruise. As three of the vents were sampled in both 1993 and in 1996, a time series of vent fluid chemistry is also reported. Measured temperatures ranged from 202 to 333°C at the 1618–1726 m depth of the vent field, which is located on Lucky Strike Seamount. These fluids are either equal to or less than the local bottom seawater in chlorinity. While the range in fluid compositions at Lucky Strike is generally within that observed elsewhere, the unusual aspects of the fluid chemistries are the relatively high pH and low Fe, Mn, Li and Zn. We attribute this, as well as an usually low Sr/Ca ratio, to reaction with a highly altered substrate. The high Si and Cu contents suggest a deep, as well as hot, source for these fluids. The fluid compositions therefore suggest formation by super-critical phase separation at a depth not less than 1300 m below the seafloor, and reaction with a relatively oxic, and previously altered, substrate. There is temporal variability in some of the vent fluid compositions as Li, K, Ca and Fe concentrations have increased in some of the vents, as has the Fe/Mn (molar) ratio, although the chlorinities have remained essentially constant from 1993 to 1996. While there is not a simple relationship between vent fluid compositions (or temperatures) and distance from the lava lake at the summit of the seamount, the vent fluids from many of the vents can be shown to be related to others, often at distances >200 m. The most southeasterly vents (Eiffel Tower and the Marker/Mounds vents) are distinct in chlorinity and other chemical parameters from the rest of the vents, although closely related to each other within the southeastern area. Similarly all of the vents not in this one area, appear closely related to each other. This suggests one or two source fluids for many of the vents, as is also inferred to be the case at TAG, but which is in contrast to observations on faster spreading ridges. This may suggest inherently different plumbing for hydrothermal systems at slower versus faster spreading ridges.  相似文献   
375.
The Chinook Trough is a trans-Pacific megatrend. By using heretofore unpublished bathymetry and geophysical data, the trend of the Chinook Trough megatrend has been determined from the Juan de Fuca Ridge in the Gulf of Alaska to the Izu-Bonin trench. The feature passes through the Emperor Fracture Zone, intersects the Krusenstern Fracture Zone at the Hess Rise, passes through the Emperor Seamounts, intersects the Mamua Fracture Zone and several unnamed NNW–SSE-trending fractures at the Shatskiy Rise. After an undetermined passage through Nadeshda Basin, it intersects another NNW–SSE-trending fracture zone, Kashima Fracture Zone, at Nelson Guyot, and ends as Uyeda Ridge. Instead of being a trough, the feature is a fracture zone, herein called a megatrend. The feature is colinear to the Mendocino and Clipperton Fracture Zones.  相似文献   
376.
377.
378.
379.
New analyses of He, Ne, Ar and CO2 trapped in basaltic glasses from the Southeast Indian Ridge (Amsterdam-St. Paul (ASP) region) show that ridge magmas degas by a Rayleigh distillation process. As a result, the absolute and relative noble gas abundances are highly fractionated with 4He/40Ar* ratios as high as 620 compared to a production ratio of ∼3 (where 40Ar* is 40Ar corrected for atmospheric contamination). There is a good correlation between 4He/40Ar* and the MgO content of the basalt, suggesting that the amount of gas lost from a particular magma is related to the degree of crystallization. Fractional crystallization forces oversaturation of CO2 because CO2 is an incompatible element. Therefore, crystallization will increase the fraction of gas lost from the magma. The He-Ar-CO2-MgO-TiO2 compositions of the ASP basalts are modeled as a combined fractional crystallization-fractional degassing process using experimentally determined noble gas and CO2 solubilities and partition coefficients at reasonable magmatic pressures (2-4 kbar). The combined fractional crystallization-degassing model reproduces the basalt compositions well, although it is not possible to rule out depth of eruption as a potential additional control on the extent of degassing. The extent of degassing determines the relative noble gas abundances (4He/40Ar*) and the 40Ar*/CO2 ratio but it cannot account for large (>factor 50) variations in He/CO2, due to the similar solubilities of He and CO2 in basaltic magmas. Instead, variations in CO2/3He (≡C/3He) trapped in the vesicles must reflect similar variations in the primary magma. The controls on C/3He in mid-ocean ridge basalts (MORBs) are not known. There are no obvious correlated variations between C/3He and tracers of mantle heterogeneity (3He/4He, K/Ti etc.), implying that the variations in C/3He are not likely to be a feature of the mantle source to these basalts. Mixing between MORB-like sources and more enriched, high 3He/4He sources occurs on and near the ASP plateau, resulting in variable 3He/4He and K/Ti compositions (and many other tracers). Using 4He/40Ar* to track degassing, we demonstrate that mixing systematics involving He isotopes are determined in large part by the extent of degassing. Relatively undegassed lavas (with low 4He/40Ar*) are characterized by steep 3He/4He-K/Ti mixing curves, with high He/Ti ratios in the enriched magma (relative to He/Ti in the MORB magma). Degassed samples (high 4He/40Ar*) on the other hand have roughly equal He/Ti ratios in both end-members, resulting in linear mixing trajectories involving He isotopes. Some degassing of ASP magmas must occur at depth, prior to magma mixing. As a result of degassing prior to mixing, mixing systematics of oceanic basalts that involve noble gas-lithophile pairs (e.g. 3He/4He vs. 87Sr/86Sr or 40Ar/36Ar vs. 206Pb/204Pb) are unlikely to reflect the noble gas composition of the mantle source to the basalts. Instead, the mixing curve will reflect the extent of gas loss from the magmas, which is in turn buffered by the pressure of combined crystallization-degassing and the initial CO2 content.  相似文献   
380.
We report new trace element data for an extensive suite of quench basalt glasses dredged from the southern Mid-Atlantic Ridge (MAR) between 40°S and 52.5°S. Ratios between highly incompatible trace elements are strongly correlated and indicate a systematic distribution of incompatible element enriched mid-ocean ridge basalt (MORB) (E-type: Zr/Nb=5.9-19, Y/Nb=0.9-8.4, (La/Sm)n=1.0-2.9) and incompatible element depleted MORB (N-type: Zr/Nb=30-69, Y/Nb=11-29, (La/Sm)n=0.48-0.79) along this section of the southern MAR. A notable feature of N-type MORB from the region is the higher than usual Ba/Nb (4-9), La/Nb (1.2-2.4) and primitive mantle normalised K/Nb ratios (>1). Ba/Nb ratios in E-type MORB samples from 47.5 to 49°S are especially elevated (>10). The occurrence and geographic distribution of E-type MORB along this section of the southern MAR can be correlated with the ridge-centred Shona and off-axis Discovery mantle plumes. In conjunction with published isotope data for a subset of the same sample suite [Douglass et al., J. Geophys. Res. 104 (1999) 2941], a model is developed whereby prior to the breakup of Gondwana and the opening of the South Atlantic Ocean, the underlying asthenospheric mantle was locally contaminated by fluids/melts rising from the major Mesozoic subduction zone along the south-southwest boundary of Gondwana, leaving a subduction zone geochemical imprint (elevated (K/Nb)n and 87Sr/86Sr ratios, decreased 143Nd/144Nd ratios). Subsequent impingement of three major mantle plume heads (Tristan/Gough, Discovery, Shona) resulted in heating and thermal erosion of the lowermost subcontinental lithosphere and dispersal into the convecting asthenospheric mantle. With the opening of the ocean basin, continued plume upwelling led to plume-ridge interactions and mixing between geochemically enriched mantle derived from the Shona and Discovery mantle plumes, material derived from delamination of the subcontinental lithosphere, and mildly subduction zone contaminated depleted asthenospheric mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号