首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   1篇
  国内免费   3篇
地质学   26篇
天文学   97篇
综合类   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   18篇
  2010年   15篇
  2009年   14篇
  2008年   11篇
  2007年   8篇
  2006年   14篇
  2005年   12篇
  2004年   9篇
  2003年   8篇
  2002年   2篇
  1998年   1篇
  1993年   1篇
排序方式: 共有124条查询结果,搜索用时 234 毫秒
81.
Crater counts at lunar landing sites with measured ages establish a steep decline in cratering rate during the period ∼3.8 to ∼3.1 Gyr ago. Most models of the time dependence suggest a roughly constant impact rate (within factor ∼2) after about 3 Gyr ago, but are based on sparse data. Recent dating of impact melts from lunar meteorites, and Apollo glass spherules, clarifies impact rates from ∼3.2 to ∼2 Gyr ago or less. Taken together, these data suggest a decline with roughly 700 Myr half-life around 3 Gyr ago, and a slower decline after that, dropping by a factor ∼3 from about ∼2.3 Gyr ago until the present. Planetary cratering involved several phases with different time behaviors: (1) rapid sweep-up of most primordial planetesimals into planets in the first hundred Myr, (2) possible later effects of giant planet migration with enhanced cratering, (3) longer term sweep-up of leftover planetesimals, and finally (4) the present long-term “leakage” of asteroids from reservoirs such as the main asteroid belt and Kuiper belt. In addition, at any given point on the Moon, a pattern of “spikes” (sharp maxima of relatively narrow time width) will appear in the production rate of smaller craters (?500 m?), not only from secondary debris from large primary lunar impacts at various distances from the point in question, but also from asteroid breakups dotted through Solar System history. The pattern of spikes varies according to type of sample being measured (i.e., glass spherules vs impact melts). For example, several data sets show an impact rate spike ∼470 Myr ago associated with the asteroid belt collision that produced the L chondrites (see Section 3.6 below). Such spikes should be less prominent in the production record of craters of D? few km. These phenomena affect estimates of planetary surfaces ages from crater counts, as discussed in a companion paper [Quantin, C., Mangold, N., Hartmann, W.K., Allemand, P., 2007. Icarus 186, 1-10]. Fewer impact melts and glass spherules are found at ∼3.8 Gyr than at ∼3.5 Gyr ago, even though the impact rate itself is known to have been higher at 3.8 Gyr ago than 3.5 Gyr. This disproves the assertion by Ryder [Ryder, G., 1990. EOS 71, 313, 322-323] and Cohen et al. [Cohen, B.A., Swindle, T.D., Kring, D.A., 2000. Science 290, 1754-1756] that ancient impact melts are a direct proxy for ancient impact (cf. Section 3.3). This result raises questions about how to interpret cratering history before 3.8 Gyr ago.  相似文献   
82.
M.E. Varela  G. Kurat 《Icarus》2006,184(2):344-364
Barred olivine (BO) chondrules are some of the most striking objects in chondrites. Their ubiquitous presence and peculiar texture caught the attention of researchers and, as a consequence, considerable effort has been expensed on unraveling their origin(s). Here we report on a detailed study of two types of chondrules: the Classic and the Multiple-Plate Type of BO chondrules from the Essebi (CM2), Bishunpur (LL3.1), Acfer 214 (CH3) and DAG 055 (C3-UNGR) chondrites, and discuss the petrographic and chemical data of their major mineral phases and glasses. Glasses occur as mesostasis or as glass inclusions, the latter either enclosed inside the olivine bars (plates) or still connected to the mesostasis. The chemical composition of all glasses, characterized by being Si-Al-Ca-rich and free of alkali elements, is similar to those of the constituents (the building blocks, such as chondrules, aggregates, inclusions, mineral fragments, etc.) of CR and CV3 chondrites. They all have high trace element contents (∼10×CI) with unfractionated CI-normalized abundances of refractory trace elements and depletions in moderately volatile and volatile elements with respect to the refractory trace elements. The presence of alkali elements (Na + K + Rb) is coupled with a low Ca content and is only observed in those glasses that have behaved as open systems. This result supports the previous finding that Ca was replaced by alkalis (e.g., Na-Ca exchange), presumably through a vapor-solid reaction. The glasses apparently are the quenched liquid from which the olivine plates crystallized. However, they do not show any chemical fractionation that could have resulted from the crystallization of the olivines, but rather have a constant chemical compositions throughout the formation of the chondrule. In a previous contribution we were able to demonstrate the role of these liquids in supporting crystal growth directly from the vapor. Here we extend application of the primary liquid condensation model to formulate a new model for the origin of BO chondrules. The primary liquid condensation model is based on the ability of dust-enriched solar-nebula gas to directly condense into a liquid, provided the gas/dust ratio is sufficiently low. Thus, we propose that chondrules can be formed by condensation of a liquid droplet directly from the solar nebula. The extensive variability in chemical composition of BO chondrules, which ranges from alkali-poor to alkali-rich, can be explained by elemental exchange reactions with the cooling nebula. We calculate the chemical composition of the initial liquid droplet from which BO chondrules could have formed and speculate about the physical and chemical conditions that prevail in the specific regions of the solar nebula that can promote creation of these objects.  相似文献   
83.
J. Gallant  M. ?uk 《Icarus》2009,202(2):371-382
We calculate the current spatial distribution of projectile delivery to the Earth and Moon using numerical orbital dynamics simulations of candidate impactors drawn from a debiased Near-Earth Object (NEO) model. We examine the latitude distribution of impactor sites and find that for both the Earth and Moon there is a small deficiency of time-averaged impact rates at the poles. The ratio between deliveries within 30° of the pole to that of a 30° band centered on the equator is small for Earth (<5%) (0.958±0.001) and somewhat greater for the Moon (∼10%) (0.903±0.005). The terrestrial arrival results are examined to determine the degree of AM/PM asymmetry to compare with the PM excess shown in meteorite fall times. We find that the average lunar impact velocity is 20 km/s, which has ramifications in converting observed crater densities to impactor size distributions. We determine that current crater production on the leading hemisphere of the Moon is 1.28±0.01 that of the trailing when considering the ratio of craters within 30° of the apex to those within 30° of the antapex and that there is virtually no nearside-farside asymmetry, in agreement with observations of rayed craters. As expected, the degree of leading-trailing asymmetry increases when the Moon's orbital distance is decreased.  相似文献   
84.
The origin of three-dimensional shapes of chondrules is an important information to identify their formation mechanism in the early solar nebula. The measurement of their shapes by using X-ray computed topography suggested that they are usually close to perfect spheres, however, some of them have rugby-ball-like (prolate) shapes [Tsuchiyama, A., Shigeyoshi, R., Kawabata, T., Nakano, T., Uesugi, K., Shirono, S., 2003. Lunar Planet. Sci. 34, 1271-1272]. We considered that the prolate shapes reflect the deformations of chondrule precursor dust particles when they are heated and melted in the high velocity gas flow. In order to reveal the origin of chondrule shapes, we carried out the three-dimensional hydrodynamics simulations of a rotating molten chondrule exposed to the gas flow in the framework of the shock-wave heating model for chondrule formation. We adopted the gas ram pressure acting on the chondrule surface of in a typical shock wave. Considering that the chondrule precursor dust particle has an irregular shape before melting, the ram pressure causes a net torque to rotate the particle. The estimated angular velocity is for the precursor radius of r0=1 mm, though it has a different value depending on the irregularity of the shape. In addition, the rotation axis is likely to be perpendicular to the direction of the gas flow. Our calculations showed that the rotating molten chondrule elongates along the rotation axis, in contrast, shrinks perpendicularly to it. It is a prolate shape. The reason why the molten chondrule is deformed to a prolate shape was clearly discussed. Our study gives a complementary constraint for chondrule formation mechanisms, comparing with conventional chemical analyses and dynamic crystallization experiments that have mainly constrained the thermal evolutions of chondrules.  相似文献   
85.
In this paper we investigate two major issues: (1) What are chondrules, and (2) why do they exist? We review the literature pertaining to each question and explore answers. We discuss the diversity of chondrules, especially with regard to their igneous textures and compositions. We review the constraints that have been placed experimentally on the thermal histories of chondrules and list those fundamental properties that all chondrule formation models must explain quantitatively in order to be considered predictive, quantitative models. We provide background on the three major classes of chondrule formation models currently being discussed, and scrutinize each with respect to how well they adhere to the experimental constraints placed on chondrule formation. Finally, we list several unresolved issues that are now or will soon be at the forefront of chondrule research.  相似文献   
86.
Graphitic carbon is a widespread precipitate in terrestrial and extraterrestrial samples. However it has a range of possible origins, which can be difficult to distinguish, including the in situ alteration of organic matter, thermal alteration of hydrocarbons, and precipitation from C–O–H fluids. Petrographic characteristics help to understand the origin of the graphite, including relationships with rock fabric, paragenetic sequences and evidence for fluid mobility. Characterization of a range of terrestrial samples will allow better interpretation of the petrography of carbon in extraterrestrial samples. In particular, improved petrographic data from carbonaceous chondrites and ureilite meteorites should help to distinguish the origin of carbon in their parent bodies.  相似文献   
87.
Isotopic records in meteorites provide evidence for the presence of several short-lived nuclides in the early solar system with half-lives varying from 105 to ∼8x107 years. Most of the nuclides with longer half-life (> 107 years) are considered to be products of stellar nucleosynthesis taking place over long time scales in our galaxy. However, for the relatively shorter-lived nuclides, two possibilities exist; they could be products of energetic particle interactions taking place in a presolar or early solar environment, or, they could have been produced in a stellar source and injected into the protosolar molecular cloud just prior to its collapse. The presently available data appear to support the latter case and put a stringent constraint of less than a million years for the time scale for the collapse of the protosolar molecular cloud to form the Sun and some of the first solar system solids. This short time scale also suggests the possibility of a triggered origin for the solar system with the very process of injection of the short-lived nuclides acting as the trigger for the collapse of the protosolar molecular cloud. Fossil records of the short-lived nuclides in meteorites also provide very useful chronological information on the early solar system processes like the time scale for nebular processing, the time scales for differentiation and for metal/silicate fractionation within planetesimals. The currently available data suggest a time scale of a few million years for nebular processing and a relatively short time scale of about ten million years within which differentiation, melting and recrystallization in some of the planetesimals took place.  相似文献   
88.
《地学前缘(英文版)》2018,9(6):1849-1858
There are four main types of natural diamonds and related formation processes. The first type comprises the interstellar nanodiamond particles. The second group includes crustal nano-and micron-scale diamonds associated with coals, sediments and metamorphic rocks. The third one includes nanodiamonds and microndiamonds associated with secondary alteration and replacing of mafic and ultramafic rocks.The fourth one includes macro-, micron-and nano-sized mantle diamonds which are associated with kimberlites, mantle peridotites and eclogites. Each diamond type has its specific characteristics. Nanosized diamond particles of lowest nanometers in size crystallize from abiotic organic matter at lower pressures and temperatures in space during the stages of protoplanetary disk formation. Nano-sized diamonds are formed from organic matter at P-T exceeding conditions of catagenesis stage of lithogenesis. Micron-sized diamonds are formed from fluids at P-T exceeding supercritical water stability.Macrosized diamonds are formed from metal-carbon and silicate-carbonate melts and fluids at P-T exceeding 1150℃ and 4.5 GPa. Nitrogen and hydrocarbons play an important role in diamond formation.Their role in the formation processes increases from macro-sized to nano-sized diamond particles.Introduction of nitrogen atoms into the diamond structure leads to the stabilization of micron-and nanosized diamonds in the field of graphite stability.  相似文献   
89.
More than 200 years after its discovery, asteroid (4) Vesta is thought to be the parent body for the howardite, eucrite and diogenite (HED) meteorites. The Dawn spacecraft spent ∼14 months in orbit around this largest, intact differentiated asteroid to study its internal structure, geology, mineralogy and chemistry. Carrying a suite of instruments that included two framing cameras, a visible-near infrared spectrometer, and a gamma-ray and neutron detector, coupled with radio tracking for gravity, Dawn revealed a geologically and geochemically complex world. A constrained core size of ∼110–130 km radius is consistent with predictions based on differentiation models for the HED meteorite parent body. Hubble Space Telescope observations had already shown that Vesta is scarred by a south polar basin comparable in diameter to that of the asteroid itself. Dawn showed that the south polar Rheasilvia basin dominates the asteroid, with a central uplift that rivals the large shield volcanoes of the Solar System in height. An older basin, Veneneia, partially underlies Rheasilvia. A series of graben-like equatorial and northern troughs were created during these massive impact events 1–2 Ga ago. These events also resurfaced much of the southern hemisphere and exposed deeper-seated diogenitic lithologies. Although the mineralogy and geochemistry vary across the surface for rock-forming elements and minerals, the range is small, suggesting that impact processes have efficiently homogenized the surface of Vesta at scales observed by the instruments on the Dawn spacecraft. The distribution of hydrogen is correlated with surface age, which likely results from the admixture of exogenic carbonaceous chondrites with Vesta's basaltic surface. Clasts of such material are observed within the surficial howardite meteorites in our collections. Dawn significantly strengthened the link between (4) Vesta and the HED meteorites, but the pervasive mixing, lack of a convincing and widespread detection of olivine, and poorly-constrained lateral and vertical extents of units leaves unanswered the central question of whether Vesta once had a magma ocean. Dawn is continuing its mission to the presumed ice-rich asteroid (1) Ceres.  相似文献   
90.
Whereas most radiometric chronometers give formation ages of individual meteorites >4.5 Ga ago, the K–Ar chronometer rarely gives times of meteorite formation. Instead, K–Ar ages obtained by the 39Ar–40Ar technique span the entire age of the solar system and typically measure the diverse thermal histories of meteorites or their parent objects, as produced by internal parent body metamorphism or impact heating. This paper briefly explains the Ar–Ar dating technique. It then reviews Ar–Ar ages of several different types of meteorites, representing at least 16 different parent bodies, and discusses the likely thermal histories these ages represent. Ar–Ar ages of ordinary (H, L, and LL) chondrites, R chondrites, and enstatite meteorites yield cooling times following internal parent body metamorphism extending over ∼200 Ma after parent body formation, consistent with parent bodies of ∼100 km diameter. For a suite of H-chondrites, Ar–Ar and U–Pb ages anti-correlate with the degree of metamorphism, consistent with increasing metamorphic temperatures and longer cooling times at greater depths within the parent body. In contrast, acapulcoites–lodranites, although metamorphosed to higher temperatures than chondrites, give Ar–Ar ages which cluster tightly at ∼4.51 Ga. Ar–Ar ages of silicate from IAB iron meteorites give a continual distribution across ∼4.53–4.32 Ga, whereas silicate from IIE iron meteorites give Ar–Ar ages of either ∼4.5 Ga or ∼3.7 Ga. Both of these parent bodies suffered early, intense collisional heating and mixing. Comparison of Ar–Ar and I–Xe ages for silicate from three other iron meteorites also suggests very early collisional heating and mixing. Most mesosiderites show Ar–Ar ages of ∼3.9 Ga, and their significantly sloped age spectra and Ar diffusion properties, as well as Ni diffusion profiles in metal, indicate very deep burial after collisional mixing and cooling at a very slow rate of ∼0.2 °C/Ma. Ar–Ar ages of a large number of brecciated eucrites range over ∼3.4–4.1 Ga, similar to ages of many lunar highland rocks. These ages on both bodies were reset by large impact heating events, possibly initiated by movements of the giant planets. Many impact-heated chondrites show impact-reset Ar–Ar ages of either >3.5 Ga or <1.0 Ga, and generally only chondrites show these younger ages. The younger ages may represent orbital evolution times in the asteroid belt prior to ejection into Earth-crossing orbits. Among martian meteorites, Ar–Ar ages of nakhlites are similar to ages obtained from other radiometric chronometers, but apparent Ar–Ar ages of younger shergottites are almost always older than igneous crystallization ages, because of the presence of excess (parentless) 40Ar. This excess 40Ar derives from shock-implanted martian atmosphere or from radiogenic 40Ar inherited from the melt. Differences between meteorite ages obtained from other chronometers (e.g., I–Xe and U–Pb) and the oldest measured Ar–Ar ages are consistent with previous suggestions that the 40K decay parameters in common use are incorrect and that the K–Ar age of a 4500 Ma meteorite should be possibly increased, but by no more than ∼20 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号