首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1116篇
  免费   182篇
  国内免费   593篇
测绘学   1篇
地球物理   105篇
地质学   1676篇
海洋学   47篇
综合类   49篇
自然地理   13篇
  2024年   6篇
  2023年   13篇
  2022年   34篇
  2021年   33篇
  2020年   46篇
  2019年   44篇
  2018年   50篇
  2017年   62篇
  2016年   60篇
  2015年   59篇
  2014年   61篇
  2013年   91篇
  2012年   108篇
  2011年   76篇
  2010年   73篇
  2009年   96篇
  2008年   97篇
  2007年   91篇
  2006年   80篇
  2005年   99篇
  2004年   78篇
  2003年   85篇
  2002年   52篇
  2001年   48篇
  2000年   50篇
  1999年   63篇
  1998年   40篇
  1997年   36篇
  1996年   35篇
  1995年   29篇
  1994年   29篇
  1993年   25篇
  1992年   13篇
  1991年   8篇
  1990年   4篇
  1989年   8篇
  1988年   6篇
  1987年   1篇
  1986年   2篇
排序方式: 共有1891条查询结果,搜索用时 31 毫秒
11.
中生代华北克拉通破坏是目前引人关注的研究课题。鉴于目前一些文章在表达克拉通状态时引用的地质图件不准确,忽略了华北克拉通从古至今的不同阶段的演化,不能正确的表达克拉通在破坏之前或之后的状态,本文强调华北克拉通破坏前的状态是研究的重要基础。华北克拉通是经历过多期克拉通化形成的。  相似文献   
12.
胶东地区晚中生代岩浆活动及对大地构造的制约   总被引:16,自引:1,他引:15  
应用近十几年来胶东地区及其周边岩浆岩体的同位素测年资料,结合几个岩体的新的SHRIMP测年数据(牙山岩体117.7Ma,院格庄岩体113.4Ma,正长斑岩脉115.7Ma),系统研究了该区晚中生代以来的岩浆活动规律,结果表明,该区可分为4个岩浆活动期;(1)晚侏罗世构造-岩浆热事件(150~160Ma),以玲珑-滦家河型岩体为代表,是在区域挤压构造应力作用下侵入的,属同构造或同造山时期的岩浆作用。(2)早白垩世早期构造-岩浆热事件(135~125Ma),以郭家岭岩体为典型,该时期的岩浆活动均具有双峰式岩浆作用特征,反映了伸展动力学背景。(3)早白垩世中晚期构造-岩浆热事件(125~105Ma),以崂山花岗岩为特征,该阶段对应于中国东部岩石圈大规模的减薄时期,是大陆裂谷作用的高峰期。(4)晚白垩世-古新世基性-超基性火山作用。本文还探讨了岩浆活动的地球动力学因素及其对大地构造的制约。  相似文献   
13.
米仓山南缘中生代沉积盆地性质讨论   总被引:2,自引:0,他引:2       下载免费PDF全文
米仓山南缘位于四川盆地北部地区,前人认为该地区晚三叠世-白垩纪受控于米仓山造山作用形成的前陆盆地.实际上,无论是按照经典的前陆盆地概念,还是陆内前陆盆地或陆内俯冲前陆盆地等术语,米仓山南缘中生代为前陆盆地值得商榷,其一些关键的地质问题必须给以重视.主要表现在:①平面构造图显示,米仓山地区,前震旦系基底与震旦系盖层之间构成一规模较大的不完整的背斜穹隆,盖层围绕基底分布,说明不是构造推覆体;②不存在形成前陆盆地的区域应力,即该区在晚三叠世开始主要是升隆作用而非强烈的推覆挤压,研究资料表明该地区大规模的逆冲推覆作用发生在燕山期,米仓山的形成也应在该时限之内,之前米仓山为一继承性的隆起;③不具备前陆盆地的沉积格局,即晚三叠世-侏罗纪的沉积格局不是呈楔形展布.鉴于此,笔者认为前陆盆地术语不适用于米仓山南缘晚三叠世-侏罗纪沉积盆地的类型.  相似文献   
14.
太平洋板块俯冲与中国东部中生代地质事件   总被引:44,自引:0,他引:44  
中国东部至少自侏罗纪开始就一直处于俯冲大洋板块之上,但是有关俯冲板块对其影响程度一直有不同的认识。最近的研究表明,太平洋海山岛链的时空分布显示太平洋板块的漂移方向曾发生多次转折,这些转折与白垩纪中国东部的构造演化和岩浆事件有着密切的时空耦合关系。从时代和力学性质上看,太平洋板块俯冲方向的改变在很大程度上控制着中国东部中生代的盆地演化和郯庐断裂活动等重要地质事件。这些认识为理解中国东部构造演化提供了新的视角,包括岩石圈减薄的机制、郯庐断裂的演化,以及燕山期大规模岩浆活动等。本文重点分析了太平洋板块俯冲与中国东部中生代岩浆活动的对应关系。在125~140Ma太平洋板块向南西方向俯冲,造成中国东部岩石圈减薄,软流圈卸载上涌,发生减压部分熔融;约125Ma,太平洋板块漂移方向发生了大幅度转折,形成安第斯式的俯冲挤压,岩石圈停止减薄和减压部分熔融,出现岩浆宁静期。随着俯冲的深入,到110Ma前后俯冲板块后撤,形成弧后拉张,岩浆活动又重新开始。  相似文献   
15.
辽东南地区晚中生代地层发育不甚完全,具有两期盆地叠合演化的特征,即早中侏罗世和早白垩世两个演化阶段,经历了2次伸展裂陷和2次挤压反转。在详细研究辽东南地区各盆地岩石地层序列、生物化石组合特征、年代地层格架以及区域地层对比的基础上,讨论了盆地的演化阶段和演化规律,指出是古太平洋板块向东亚大陆边缘不同方向的俯冲与走滑,以及来自北方西伯利亚板块的持续碰撞挤压的联合构造应力场制约了中国东北地区晚中生代盆地的裂陷过程和构造反转的演化,进而为揭示华北克拉通晚中生代岩石圈演化的动力学机制提供参考依据。  相似文献   
16.
Based on the determination of composition of volcanic volatiles and petrologic estimation of the total mass of volatiles erupted, we showed important advances in the study of the impact of Mesozoic and Cenozoic volcanic activities on paleo-environmental changes in China. The volcanic activities include western Liaoning and Zhangjiakou Mesozoic intermediate-acidic explosive eruptions, southern Tibet and Shanwang Cenozoic volcanism, and Mt. Changbai volcanic eruption around one thousand years ago. The paper predominantly discusses the earth’s surface temperature changes, ozone depletion, acidic rain formation and mass mortalities of vertebrate induced by the Mesozoic and Cenozoic volcanism in China. __________ Translated from Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(4): 319–322 [译自: 矿物岩石地球化学通报]  相似文献   
17.
辽宁中部一些地区的含煤地层以前被认为是白垩系下统的沙海组、阜新组,该观点导致区域地层对比混乱。通过对该区含煤地层组合特征综合分析,认为其应属下侏罗统北票组含煤岩系。此结论对进一步明确该地区找煤方向、确定找煤远景区具有重要意义。  相似文献   
18.
初论地幔热柱与成矿——以冀西北金银多金属成矿区为例   总被引:22,自引:8,他引:14  
作者通过对冀两北金、银多金属矿化集中区成矿规律和物探航磁、重力及遥感信息的综合研究,提出冀西北地区存在一个超越内蒙地轴与燕山褶皱带两个不同历史大地构造单元之上的中生代地幔热柱构造。文中例举了地幔热梓构造标志特征,探讨了地幔热柱构造地质作用(超变质作用、岩浆作用、成矿作用)及其时空演化规律,建立了地幔热柱构造的壳幔成矿模式。  相似文献   
19.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   
20.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号