首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3755篇
  免费   734篇
  国内免费   2107篇
测绘学   6篇
大气科学   1篇
地球物理   363篇
地质学   5782篇
海洋学   136篇
天文学   2篇
综合类   206篇
自然地理   100篇
  2024年   22篇
  2023年   53篇
  2022年   125篇
  2021年   142篇
  2020年   167篇
  2019年   207篇
  2018年   195篇
  2017年   203篇
  2016年   219篇
  2015年   202篇
  2014年   270篇
  2013年   268篇
  2012年   347篇
  2011年   268篇
  2010年   249篇
  2009年   247篇
  2008年   295篇
  2007年   289篇
  2006年   299篇
  2005年   299篇
  2004年   250篇
  2003年   245篇
  2002年   192篇
  2001年   185篇
  2000年   179篇
  1999年   199篇
  1998年   145篇
  1997年   154篇
  1996年   108篇
  1995年   93篇
  1994年   112篇
  1993年   82篇
  1992年   65篇
  1991年   49篇
  1990年   43篇
  1989年   33篇
  1988年   22篇
  1987年   32篇
  1986年   16篇
  1985年   9篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   7篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有6596条查询结果,搜索用时 31 毫秒
51.
马雪盈  刘庆  闫方超  何苗  张宏远 《岩石学报》2021,37(8):2562-2578
强亲铁元素与亲石元素具有不同的地球化学行为,因此能够从不同的角度为造山带中超镁铁岩的成因及演化提供重要信息。位于苏鲁造山带东北端的胶东海阳所超镁铁岩主要由橄榄岩和辉石岩组成,它们常以团块状赋存于花岗质片麻岩中。虽然前人对这些超镁铁岩已经开展大量岩石学研究,但关于其成因及构造属性仍存在较大争议。本文开展了海阳所超镁铁岩的全岩主微量元素、强亲铁元素及Re-Os同位素的分析工作,结果显示蛇纹石化橄榄岩具有较高的MgO和Fe2O3T含量,较低的Al2O3、TiO2和CaO含量,明显富集流体迁移元素(U、Pb),亏损高场强元素(Zr、Hf),强亲铁元素没有发生明显分异,但Ru显示正异常,表明海阳所蛇纹石化橄榄岩是经历了低-中等程度部分熔融及熔/流体交代作用影响的残余地幔橄榄岩。海阳所辉石岩的主量元素表现出明显的结晶分异特征,稀土元素较原始地幔富集,铂族元素(PGEs)含量较低且发生了明显的分异,表明辉石岩的地幔源区经历过高程度的部分熔融和硫化物的分离。海阳所蛇纹石化橄榄岩的Os同位素地球化学特征表现出大洋亲和性,与辉石岩不具有熔体-残留体的关系。由于该地区发育较深层次的韧性剪切带,蛇纹石化橄榄岩中的橄榄石与辉石表现出韧性变形的特征,同时有辉石岩侵入到橄榄岩的现象,表明该地区的蛇纹石化地幔橄榄岩与辉石岩既不同时,也不同源,因此,暗示了该套岩石组合可能形成于大洋核杂岩(OCC)与洋脊型蛇绿岩(MOR)堆晶岩交互发育环境。  相似文献   
52.
Grain size and grain shape analysis of fault rocks   总被引:4,自引:0,他引:4  
  相似文献   
53.
The major continental blocks in northeastern Asia are the North China block and the South China block, which have collided starting from the Korean peninsula. Geologic and geophysical interpretations reveal a well defined suture zone in northeastern China from Qinling through Dabie to Jiaodong. The discovery of high-pressure metamorphic rocks in the Hongseong area of the Korean peninsula, prominent evidence for the collision zone, indicates extension of the collision zone in northeastern China into the Korean peninsula. Interpretation of the GRACE satellite gravity dataset shows two prominent structural boundaries in the Yellow Sea. One extends from the Jiaodong Belt in eastern China to the Imjingang Belt in the Korean peninsula. The other extends from near Nanjing, eastern China, to Hongseong. Tectonic movement in or near the suture zone may be responsible for seismic activity in the western Korean peninsula and the development of the Yellow Sea sedimentary basin.  相似文献   
54.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   
55.
The Sivamalai alkaline complex lies at the southern margin of the Cauvery Shear System that separates the Archaean and Proterozoic domains of the Southern Granulite Terrain in India. U–Pb TIMS dating of zircon from a pegmatitic syenite sample in the complex yields a concordant age of 590.2 ± 1.3 (2σ) Ma which is interpreted to date the intrusion of the alkaline rocks. A lower concordia intercept at 168 ± 210 Ma defined by two grains with high common lead may indicate post-magmatic disturbances due to recrystallisation which is also evident in the CL images of the zircons. EPMA dating of monazite from a post-kinematic pegmatite which intrudes the crystalline basement hosting the alkaline rocks yields an age of 478 ± 29 (2σ) Ma and provides a lower bracket for the main phase of tectonism in this part of the Southern Granulite Terrain. The Pan-African high-grade metamorphism and ductile deformation has thus most likely affected the alkaline rocks. This is supported by the presence of a metamorphic foliation and extensive recrystallisation textures seen in the rocks. The major and trace element concentrations measured on selected samples reveals the presence of both enriched and depleted rock types. The enriched group includes ferrosyenite and nepheline syenite while the depleted group has only nepheline syenites. The trace element depletion of some nepheline syenites is interpreted to be a result of fractional crystallization involving the removal of accessory phases like zircon, titanite, apatite and allanite.  相似文献   
56.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   
57.
Besides granites of the ilmenite series, in which the anisotropy of magnetic susceptibility (AMS) is mainly controlled by paramagnetic minerals, the AMS of igneous rocks is commonly interpreted as the result of the shape-preferred orientation of unequant ferromagnetic grains. In a few instances, the anisotropy due to the distribution of ferromagnetic grains, irrespective of their shape, has also been proposed as an important AMS source. Former analytical models that consider infinite geometry of identical and uniformly magnetized and coaxial particles confirm that shape fabric may be overcome by dipolar contributions if neighboring grains are close enough to each other to magnetically interact. On these bases we present and experimentally validate a two-grain macroscopic numerical model in which each grain carries its own magnetic anisotropy, volume, orientation and location in space. Compared with analytical predictions and available experiments, our results allow to list and quantify the factors that affect the effects of magnetic interactions. In particular, we discuss the effects of (i) the infinite geometry used in the analytical models, (ii) the intrinsic shape anisotropy of the grains, (iii) the relative orientation in space of the grains, and (iv) the spatial distribution of grains with a particular focus on the inter-grain distance distribution. Using documented case studies, these findings are summarized and discussed in the framework of the generalized total AMS tensor recently introduced by Cañon-Tapia (Cañon-Tapia, E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.). The most important result of our work is that analytical models far overestimate the role of magnetic interaction in rock fabric quantification. Considering natural rocks as an assemblage of interacting and non-interacting grains, and that the effects of interaction are reduced by (i) the finite geometry of the interacting clusters, (ii) the relative orientation between interacting grains, (iii) their heterogeneity in orientation, shape and bulk susceptibility, and (iv) their inter-distance distribution, we reconcile analytical models and experiments with real case studies that minimize the role of magnetic interaction onto the measured AMS. Limitations of our results are discussed and guidelines are provided for the use of AMS in geological interpretation of igneous rock fabrics where magnetic interactions are likely to occur.  相似文献   
58.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   

59.
Mesozoic brackish-water bivalve faunas in Japan diversified in three steps: at the beginning of the Early Jurassic, Early and Late Cretaceous. The Hettangian Niranohama Fauna in northeastern Honshu represents the establishment of a heterodont-dominated brackish-water fauna that persisted until the early Late Cretaceous. No similar composition is known from the Triassic. The infauna consists mostly of non-siphonate and some short-siphonate heterodonts, while the epifauna is represented by diverse pteriomorphian families. In the Early Cretaceous Tetori Group in central Honshu, the long-siphonate heterodonts Tetoria (Corbiculidae) and the semi-infaunal soft-bottom oyster Crassostrea appeared. The evolutionary diversification of the latter, known as the most important element of modern brackish-water faunas, may thus originate at that time. In the early Late Cretaceous (Cenomanian) of the Goshoura and Mifune Groups in west Kyushu, several euryhaline deep-burrowing heterodont families, such as Veneridae and Tellinidae, further diversified in the brackish and marine environments. The Late Cretaceous is characterized by massive shell biolithic beds in which large Crassostrea species are common, a feature common for Cenozoic brackish-water faunas. The long-term changes in the composition of the brackish-water faunas in Japan represents thus an evolutionary record, irrespective of the severe physiological and environmental conditions imposed on the highly conservative nature of the fauna.  相似文献   
60.
Compressional and shear wave velocities and attenuation measurements have been carried out in some of the borehole samples of acidic, basic and intermediate granulites of Mahabalipuram, Tamil Nadu, India. The results have been obtained at ambient conditions using ‘time-of-flight’ pulse transmission technique at 1.0 MHz frequency. The results show linear relationships between velocity and density, and velocity and attenuation properties of the rocks. The acidic granulites show lower velocities and higher attenuation than the intermediate and basic granulites. The average values of the Poisson’s ratio of acidic, intermediate and basic granulites have been found to be 0.210, 0.241 and 0.279 respectively. The variations in velocities and attenuation in these low porosity crystalline rocks are found to be strongly influenced by their mineral composition. The laboratory velocity data (extrapolated to high pressure) of the present study and the published field velocity data from deep seismic sounding studies indicate that these granulite facies rocks may belong to mid-crustal depths only.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号