首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31629篇
  免费   5412篇
  国内免费   8692篇
测绘学   4025篇
大气科学   4728篇
地球物理   8260篇
地质学   16075篇
海洋学   5103篇
天文学   1657篇
综合类   2432篇
自然地理   3453篇
  2024年   211篇
  2023年   597篇
  2022年   1053篇
  2021年   1295篇
  2020年   1561篇
  2019年   1768篇
  2018年   1404篇
  2017年   1672篇
  2016年   1628篇
  2015年   1896篇
  2014年   2145篇
  2013年   2351篇
  2012年   2246篇
  2011年   2008篇
  2010年   1770篇
  2009年   1929篇
  2008年   1942篇
  2007年   2212篇
  2006年   2196篇
  2005年   1892篇
  2004年   1676篇
  2003年   1380篇
  2002年   1218篇
  2001年   961篇
  2000年   1088篇
  1999年   1015篇
  1998年   842篇
  1997年   678篇
  1996年   569篇
  1995年   466篇
  1994年   433篇
  1993年   368篇
  1992年   330篇
  1991年   205篇
  1990年   155篇
  1989年   204篇
  1988年   119篇
  1987年   81篇
  1986年   60篇
  1985年   30篇
  1984年   18篇
  1983年   10篇
  1982年   8篇
  1981年   6篇
  1980年   8篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1954年   16篇
  1877年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.  相似文献   
122.
Solid-phase microextraction (SPME) is a simple, sensitive and less destructive method for the determination of dimethylsulfide (DMS) in seawater. Combined with detection by gas chromatography-mass spectrometry (GC-MS), the method had sufficient sensitivity (minimum detectable concentration of DMS was 0.05 nM), and practical levels of reproducibility (relative standard deviation ≤7%) and linearity (r 2 > 0.995) over a wide concentration range (0.5 to 910 nM). The protocol developed was applied to a Sagami Bay water sample to determine concentrations of DMS and DMSP, and in situ DMSP-lyase activity.  相似文献   
123.
A numerical model to compute wave field is developed. It is based on the Berkhoff diffraction-refraction equation, in which an energy dissipation term is added, to take into account the breaking and the bottom friction phenomena. The energy dissipation function, by breaking and by bottom friction, is introduced in the Berkhoff equation to obtain a new equation of propagation.The resolution is done with the hybrid finite element method, where lagrangians elements are used.  相似文献   
124.
Wave-induced seabed instability, either momentary liquefaction or shear failure, is an important topic in ocean and coastal engineering. Many factors, such as seabed properties and wave parameters, affect the seabed instability. A non-dimensional parameter is proposed in this paper to evaluate the occurrence of momentary liquefaction. This parameter includes the properties of the soil and the wave. The determination of the wave-induced liquefaction depth is also suggested based on this non-dimensional parameter. As an example, a two-dimensional seabed with finite thickness is numerically treated with the EFGM meshless method developed early for wave-induced seabed responses. Parametric study is carried out to investigate the effect of wavelength, compressibility of pore fluid, permeability and stiffness of porous media, and variable stiffness with depth on the seabed response with three criteria for liquefaction. It is found that this non-dimensional parameter is a good index for identifying the momentary liquefaction qualitatively, and the criterion of liquefaction with seepage force can be used to predict the deepest liquefaction depth.  相似文献   
125.
Abstract

With the large-scale development and utilization of ocean resources and space, it is inevitable to encounter existing submarine facilities in pile driving areas, which necessitates a safety assessment. In this article, by referring to a wharf renovation project as a reference, the surrounding soil response and buried pipe deformation during pile driving in a near-shore submarine environment are investigated by three-dimensional (3D) numerical models that consider the pore water effect. Numerical studies are carried out in two different series: one is a case of a single pile focusing on the effect of the minimum plane distance of the pile–pipe, and the other is a case of double piles focusing on the effect of the pile spacing.  相似文献   
126.
127.
At present, the barotropic buoyant stability parameter has been derived from a vertical virtual displacement of a water parcel. The barotropic inertial stability parameter in the eccentrically cyclogeostrophic, basic current field was derived in 2003 from a horizontal cross-stream virtual displacement of a parcel. By expressing acceleration of a parcel due to a virtual displacement, which is arbitrarily sloping within a vertical section across the basic current, in terms of natural coordinates, we derived the vertical component of baroclinic buoyant stability parameter B 2 2, the horizontal component of baroclinic inertial stability parameter I 2 2, the baroclinic joint stability parameter J 2, its buoyant component B 2 and its inertial component I 2. B 2 is far greater than I 2 2, and when neglecting relative vorticity except for vertical shear, a downward convex curve of J 2 plotted against the slope of a virtual displacement follows a trend of B 2 curve. If a parcel displaces along a horizontal surface or an isopycnal surface, however, B 2 vanishes, and J 2 becomes equal to I 2. Actual parcel is apt to displace not only along the bottom slope, but also along the sea surface and an isopycnal interfacial surface, which is approximately equivalent to an isentropic surface, preferred by lateral mixing and exchange of momentum. Such actual displacement makes B 2 vanishing, and grants I 2 an important role. The present analysis of I 2 examining effects due to curvature and horizontal and vertical shear vorticities are useful in deepening our understanding of baroclinic instability in actual oceanic streams.  相似文献   
128.
The accurate prediction of extreme excursion and mooring force of floating offshore structures due to multi-variete environmental conditions which requires the joint probability analysis of environmental conditions for the worst case situation is still impractical as the processing of large amount of met-ocean data is required. On the other hand, the simplified multiple design criteria (e.g. the N-year wave with associated winds and currents) recommended by API known as traditional method does lead neither to the N-year platform response nor to the N-year mooring force. Therefore, in order to reduce the level of conservatism as well as uncertainties involved in the traditional method the response-based method can be used as a reliable alternative approach. In this paper this method is described. In order to perform the calculations faster using large databases of sea states, Artificial Neural Networks (ANN) is designed and employed. In the paper the response-based method is applied to a 200,000 tdw FPSO and the results are discussed.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号