首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   18篇
  国内免费   26篇
测绘学   4篇
大气科学   2篇
地球物理   148篇
地质学   63篇
海洋学   7篇
天文学   1篇
综合类   8篇
自然地理   25篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   5篇
  2011年   9篇
  2010年   2篇
  2009年   11篇
  2008年   30篇
  2007年   21篇
  2006年   21篇
  2005年   10篇
  2004年   14篇
  2003年   5篇
  2002年   6篇
  2001年   9篇
  2000年   14篇
  1999年   17篇
  1998年   17篇
  1997年   12篇
  1996年   8篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1988年   1篇
  1987年   4篇
排序方式: 共有258条查询结果,搜索用时 437 毫秒
181.
在“九五”科技重点项目“中国若干近代火山潜在喷发危险及其监测研究”项目起动之际,作者对于火山喷发危险的监测研究中的CT技术者进行调研,本文总结了这方面的研究3方法和思路,并介绍了中国在这方面的部分成果,展望今后的研究动向。  相似文献   
182.
Volcanic activity can enhance several secondary effects, including the formation of one or more natural dams. A common example is from volcanic collapse, where huge mass volumes are rapidly emplaced, obstructing the drainage around a volcano. Their duration depends on the volume of the obstructing mass, inflow rate, and on its textural characteristics. A block facies of a debris avalanche produces durable and permeable dams that consist of decimeter to meter-sized blocks without matrix, whereas a mixed facies is easily eroded after overflowing. Analysis of the sedimentological characteristics of different volcaniclastic deposits that formed natural dams indicate that a mean grain size (Md) equal to −1 phi divides the field of debris avalanche dams (Md < −1 phi) from that formed from other types of volcanic deposits. In addition, the matrix proportion of dams formed by debris avalanches are less than the 50% and the percentage of mud fraction is highly variable, up to 30%. Combining the granulometric textures with duration time of the dam shows no clear relation. Dam durability is probably more dependent on the volume of the lake and the inflow rate. Only in some cases, as mud fraction increases is the blockage also less durable because the lower permeability favors rapid infilling. The texture of the dam also determines the types of secondary flows that originate by their breakdown. These vary from cohesive debris flow to hyperconcentrated flow, representing different hazards due to their magnitude and their different behavior downstream.  相似文献   
183.
A careful re-examination of the well-known written documents pertaining to the 2,750-year-long historical period of Mount Etna was carried out and their interpretation checked through the high-accuracy archeomagnetic method (>1,200 large samples), combined with the 226Ra-230Th radiochronology. The magnetic dating is based upon secular variation of the direction of the geomagnetic field (DGF) and estimated to reach a precision of  ±40 years for the last 1,200 years, and ±100 to 200 years up to circa 150 B.C. Although less precise, the 226Ra-230Th method provides a unique tool for distinguishing between historic and prehistoric lavas, which in some cases might have similar DGFs. We show that despite the abundance of details on ancient historical eruptions, the primary sources of information are often too imprecise to identify their lava flows and eruptive systems. Most of the ages of these lavas, which are today accepted on the geological maps and catalogues, were attributed in the 1800s on the basis of their morphology and without any stratigraphical control. In fact, we found that 80% of the “historically dated” flows and cones prior to the 1700s are usually several hundreds of years older than recorded, the discrepancies sometimes exceeding a millennium. This is proper the case for volcanics presumed of the “1651 east” (actually ∼1020), “1595” (actually two distinct flows, respectively, ∼1200 and ∼1060), “1566” (∼1180), “1536” (two branches dated ∼1250 and ∼950), “1444” (a branch dated ∼1270), “1408” (lower branches dated ∼450 and ∼350), “1381” (∼1160), “1329” (∼1030), “1284” (∼1450 and ∼700), “1169 or 812” (∼1000) eruptions. Conversely, well-preserved cones and flows that are undated on the maps were produced by recent eruptions that went unnoticed in historical accounts, especially during the Middle Ages. For the few eruptions that are recorded between A.D. 252 and 750 B.C., none of their presumed lava flows shows a DGF in agreement with that existing at their respective dates of occurrence, most of these flows being in fact prehistoric. The cinder cones of Monpeloso (presumed “A.D. 252”) and Mt. Gorna (“394 B.C.”), although roughly consistent magnetically and radiochronologically with their respective epochs, remain of unspecified age because of a lack of precision of the DGF reference curve at the time. It is concluded that at the time scale of the last millennia, Mount Etna does not provide evidence of a steady-state behavior. Periods of voluminous eruptions lasting 50 to 150 years (e.g., A.D. 300–450, 950–1060, 1607–1669) are followed by centuries of less productive activity, although at any time a violent outburst may occur. Such a revised history should be taken into account for eruptive models, magma output, internal plumbing of the volcano, petrological evolution, volcano mapping and civil protection.  相似文献   
184.
长白山天池火山粗面玄武岩的喷发历史与演化   总被引:18,自引:11,他引:18  
本文新提出的年代学和岩石化学结果,进一步从天池火山与区域火山活动的关系,论述了天池火山造盾、造锥历史和岩浆结晶分异转型的时间约束,早更新世早期(2Ma前)开始粗面玄武岩的造盾,早更新世晚期(约1Ma)粗面玄武岩向粗安岩、粗面岩演化,中更新世是粗面岩造锥的主阶段,到了晚更新世(约0.1Ma)粗面岩向碱流岩演化。在中-晚更新世来自地壳岩浆房的粗面岩、碱流岩造锥过程中,来自地幔的粗面玄武岩浆喷发活动始终没有间断过。由于来自地幔粗面玄武质岩浆持续向地壳岩浆房补给,所以天池火山是一座长寿命的火山。岩浆的结晶分异作用和混合作用是天池火山岩浆演化的两个最重要过程,前者形成天池火山双峰式火山岩分布特征,后者成为天池火山喷发的触发机制。天池火山在晚更新世-全新世碱流质岩浆主喷发期兼有少量玄武质粗安岩、粗安岩或粗面质岩浆的交替喷出,揭示了天池火山的地壳岩浆房熔体的分层结构特点,由于来自地幔粗面玄武质岩浆注入地壳岩浆房,导致不同层位岩浆的扰动和混合作用,触发天池火山的喷发。  相似文献   
185.
The analysis of earthquake-related signals in hydrochemical time series is still a challenging task. Mostly it is unclear how the geometrical and energetic distribution of earthquakes is influencing variation in the hydrochemical composition of monitoring sites, e.g. located close to volcanoes. Past research showed that linear stress-release models alone are not capable to explain sufficiently observed variation in hydrochemical time series due to earthquake activity. A spring located at the base of Koryaksky Volcano, which has shown hydrochemical variation close to 5, major earthquakes, was chosen to analyse relation patterns between hydrochemical variation and seismicity. A possible mechanism, explaining observed hydrochemical variation, that seismic waves trigger an underground water pumping caused by nucleation of gas bubbles in magma was proposed. Consequences are an increase of discharge, gas content in water and changes in the mixing ratios of waters of different genesis. Based on functions of aggregated earthquake information (E) it is herein shown that seismotectonic-triggered processes have a significant influence on the variation of the hydrochemistry of the spring, lasting longer than two decades. At least seven categories of relation patterns between hydrochemical variation and seismotectonic activity E can be identified. A conducted spectral analysis shows that earthquake activity and hydrochemistry share spikes in frequencies. Results prove that the use of functions of transformed aggregated seismic observations is useful to represent the seismotectonic activity for analysing earthquake-related signals in hydrochemical time series.  相似文献   
186.
Leveling surveys in 1923, 1976, and each year from 1983 to 1993 have shown that the east-central part of the Yellowstone caldera, near the base of the Sour Creek resurgent dome, rose at an average rate of 14±1 mm/year from 1923 to 1976 and 22±1 mm/year from 1976 to 1984. In contrast, no detectable movement occurred in the same area from 1984 to 1985 (-2±5 mm/year), and from 1985 to 1993 the area subsided at an average rate of 19±1 mm/year. We conclude that uplift from 1923 to 1984 was caused by: (1) pressurization of the deep hydrothermal system by fluids released from a crystallizing body of rhyolite magma beneath the caldera, then trapped beneath a self-sealed zone near the base of the hydrothermal system; and (2) aseismic intrusions of magma into the lower part of the sub-caldera magma body. Subsidence since 1985 is attributed to: (1) depressurization and fluid loss from the deep hydrothermal system, and (2) sagging of the caldera floor in response to regional crustal extension. Future intrusions might trigger renewed eruptive activity at Yellowstone, but most intrusions at large silicic calderas seem to be accommodated without eruptions. Overpressurization of the deep hydrothermal system could conceivably result in a phreatic or phreatomagmatic eruption, but this hazard is mitigated by episodic rupturing of the self-sealed zone during shallow earthquake swarms. Historical ground movements, although rapid by most geologic standards, seem to be typical of inter-eruption periods at large, mature, silicic magma systems like Yellowstone. The greatest short-term hazards posed by continuing unrest in the Yellowstone region are: (1) moderate to large earthquakes (magnitude 5.5–7.5), with a recurrence interval of a few decdes; and (2) small hydrothermal explosions, most of which affect only a small area (<0.01 km2), with a recurrence interval of a few years.  相似文献   
187.
Hydrophone measurements of acoustic noise levels in the Crater Lake of Mount Ruapehu, New Zealand were made on 18 January 1991 from an inflatable rubber boat on the lake. The greatest sound pressures were recorded in the 1–10 Hz band, with sound levels generally decreasing about 20 dB per decade from 10 Hz to 80 kHz. The low frequency noise did not have an obvious relationship to the tremor observed at a seismic station within 1 km of the lake. The comparatively low levels of middle and high frequency sound meant that at the time of measurement, direct steam input did not make a significant contribution to the heating of Crater Lake. This is consistent with the earlier conclusion that during the last decade a major part of the heat input of Crater Lake has come from lake water that was heated below the lake and recycled back into the lake.  相似文献   
188.
赵茜  蔡元峰  潘宇观  张贺 《地质论评》2021,67(3):67040014-67040014
新西兰克马德克弧上发育一热液活动极为活跃的海底潜火山——兄弟火山,为了研究该地区热液成矿模式,IODP376科学家于2018年5~7月在火山口选取了5个位置进行了钻探工作,并获得数百米岩芯。其中U1530A号钻孔采样深度为453.1 mbsf(meter below sea floor),共揭露76.77 m岩芯,部分呈现出一种蓝色调,被前人称作“蓝黏土”。为了查明其致色矿物、研究呈色机理及其地质意义,笔者等利用XRD、DR-UV-Vis、SEM、TEM对16.97-309.22 mbsf的11个样品进行了分析测试。根据测试结果可以将样品的矿物组合大致分为两类:①伊利石+绿泥石+殴泊-C+黄铁矿+硬石膏+石英±蓝铁矿;②叶蜡石+伊利石+石英±蓝铁矿。SEM和TEM形貌观察结果显示,蓝铁矿并不具有完好的晶形,甚至未发现微米级及以上尺寸的单颗粒,而仅以基质或胶结物形式均匀分布在样品中,最终导致样品被染色而呈现出不同色调的蓝色。蓝铁矿在IODP样品中的发现指示着研究区热液流体具有低温及还原性特征,且在蓝铁矿形成后也仍然保持着相对还原的环境而使得蓝铁矿能够稳定存在。  相似文献   
189.
Fugen-dake, the main peak of Unzen Volcano, began a new eruption sequence on November 17, 1990. On May 20, 1991, a new lava dome appeared near the eastern edge of the Fugen-dake summit. Small-scale, 104–106 m3 in volume, Merapi-type block and ash flows were frequently generated from the growing lava dome during May–June, 1991. These pyroclastic flows were accompanied by co-ignimbrite ash plumes that deposited ash-fall deposits downwind of the volcano. Three examples of co-ignimbrite ash-fall deposits from Unzen pyroclastic flows are described. The volume of fall deposits was estimated to be about 30% by volume of the collapsed portions of the dome that formed pyroclastic flows. This proportion is smaller than that described for other larger co-ignimbrite ash-fall deposits from other volcanoes. Grain size distributions of the Unzen co-ignimbrite ash-fall deposits are bi-modal or tri-modal. Most ashes are finer than 4 phi and two modes were observed at around 4–7 phi and 9 phi. They are composed mainly of groundmass fragments. Fractions of another mode at around 2 phi are rich in crystals derived from dome lava. Some of the fine ash component fell as accretionary lapilli from the co-ignimbrite ash cloud indicating either moisture or electrostatic aggregation. We believe that the co-ignimbrite ash of Unzen block and ash flows were formed by the mechanical fracturing of the cooling lava blocks as they collapsed and moved down the slope. These ashes were entrained into the convective plumes generated off the tops of the moving flows.  相似文献   
190.
The active crater of Nakadake at Aso Volcano, southwestern Japan, has been occupied by a lake during its dormant periods. Multiple ash emissions were observed from the crater lake between July 2003 and August 2005. The largest events occurred on 10 July 2003 and 14 January 2004. On 10 July 2003, ash (41 tons) was dispersed throughout an area extending 14 km east-northeast of the vent, and on 14 January 2004 ash (32 tons) extended 8 km to the east-southeast. Thereafter, small ash emissions were frequent at the crater lake, in which the water level fell considerably from April to August 2005. During this period major ash emitting events, producing mostly white aggregated ash, occurred on June 10–12, June 21 (4.2 tons) and July 25 (1.2 tons). Ash emissions at the Nakadake crater in 2003–2005 were classified into three types: gentle release of white aggregated ash from fumaroles inside the crater lake (e.g. daytime of 14 April, 10–12 June and 25 July 2005); emission of black ash from an almost dried-up vent (21 June 2005); and short-time (ca. 20 s) small-explosion-triggered gas-and-ash emission through the crater lake (10 July 2003, 14 January 2004 and 14 April 20h41m 2005). All products from these ash emissions consisted of fine-grained (< 1 mm) glass shards, crystals and lithic fragments, and contained neither lapilli nor blocks. Although the glass shards show varying degrees of crystallization and alteration, clear glass shards, which appear fresh, are probably juvenile materials. These observations suggest that the 2003–2005 ash emissions from the crater lake of Nakadake Volcano are related to newly ascending magma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号