全文获取类型
收费全文 | 715篇 |
免费 | 117篇 |
国内免费 | 350篇 |
专业分类
测绘学 | 1篇 |
大气科学 | 1篇 |
地球物理 | 234篇 |
地质学 | 900篇 |
海洋学 | 20篇 |
天文学 | 7篇 |
综合类 | 12篇 |
自然地理 | 7篇 |
出版年
2024年 | 6篇 |
2023年 | 29篇 |
2022年 | 28篇 |
2021年 | 22篇 |
2020年 | 33篇 |
2019年 | 24篇 |
2018年 | 29篇 |
2017年 | 21篇 |
2016年 | 15篇 |
2015年 | 23篇 |
2014年 | 33篇 |
2013年 | 39篇 |
2012年 | 34篇 |
2011年 | 35篇 |
2010年 | 17篇 |
2009年 | 62篇 |
2008年 | 73篇 |
2007年 | 71篇 |
2006年 | 68篇 |
2005年 | 59篇 |
2004年 | 60篇 |
2003年 | 46篇 |
2002年 | 37篇 |
2001年 | 27篇 |
2000年 | 25篇 |
1999年 | 39篇 |
1998年 | 24篇 |
1997年 | 32篇 |
1996年 | 22篇 |
1995年 | 24篇 |
1994年 | 26篇 |
1993年 | 28篇 |
1992年 | 17篇 |
1991年 | 11篇 |
1990年 | 9篇 |
1989年 | 10篇 |
1988年 | 9篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1982年 | 1篇 |
1979年 | 1篇 |
1978年 | 3篇 |
排序方式: 共有1182条查询结果,搜索用时 15 毫秒
111.
112.
113.
中国大陆科学钻探工程第三先导孔(PP3钻孔),位于秦岭-大别-苏鲁超高压造山带的东部,赣榆岗上超镁铁岩体中。钻孔中超镁铁岩的岩性包括纯橄岩和石榴超镁铁岩等,该超镁铁岩的SiO_2含量均值在43.68%,变化范围为41.9%~47.11%;MgO均值在44.71%,变化范围为47.12%~48.62%;Cr_2O_3均值在0.39%,变化范围为0.30%~0.47%;CaO均值0.12%(变化范围为0.006%~0.34%);Na2O均值在0.05%(变化范围为0.005%~0.32%)。超镁铁质岩的Mg#(Mg/(Mg+Fe)×100)稳定在91.9~93.0之间,Cr#(Cr/(Cr+Fe)×100)均值在38,较高;变化在30~45之间,变化小。其中闪石化金云母超镁铁岩具有最低的值(Cr#=19)。Ni含量在2100×10~(-6)~2500×10~(-6),CaO含量均值为0.13%,Al_2O_3含量均值为0.41%。岩体成分均一,表现为高镁,低钙和低铝的特征。超镁铁岩的不相容元素和稀土元素总量很低,稀土元素总量均值在0.60×10~(-6)。(La/Yb)N比值在6.9~51.2,均值在16.1,重稀土元素严重亏损,是中国东部最亏损的地幔岩之一。超镁铁岩中橄榄石成分(Fo在88.7~93.1之间,Fa在6.8~11.1之间),从早期到晚期,岩石Fo值从93→91~92.4→88.7~89.1。铬尖晶石Cr#值从51到89变化,TiO_2和MnO_2值分别低于0.26%和0.46%,晚期铬尖晶石Cr#值增大,Ti含量减小。单斜辉石由透辉石(Wo_(45.9)8En_(47.89)Fs_(2.73)Ac_(3.39))和顽透辉石(Wo_(27.61)En_(68.78)Fs_(2.27)Ac_(1.34))两种,透辉石(Cpx_Ⅰ)在顽透辉石(Cpx_Ⅱ)中呈被交代的残余粒状。角闪石和金云母呈明显的条带状和脉状,局部发育。岩石具有弱的Na和K交代作用,较高的Sr和Ba等元素,亏损高场强元素(HSFE),以及特征的稀土元素和微量元素配分曲线;岩石中主要组成矿物橄榄石从早期到晚期,矿物Mg#指数下降(Mg#从93→88);单斜辉石中可看到透辉石被顽透辉石交代现象;次生角闪石和金云母的形成等特征都显示超镁铁岩经历了碳酸盐交代作用。在超镁铁岩矿物橄榄石中发现细小白云石和菱镁矿等碳酸盐矿物更有力证明了苏鲁超高压变质带超镁铁岩经历了深部碳酸盐交代作用。PP3钻孔超镁铁岩属于强烈亏损地幔岩区域,单斜辉石和角闪石等含水矿物在超镁铁岩中含量低,交代作用的范围和规模有限,且交代作用在动力学上是快速的和不平衡的过程。 相似文献
114.
贵州水城二叠纪钠质粗面玄武岩的地球化学特征及其源区 总被引:4,自引:0,他引:4
贵州水城二叠纪玄武岩位于峨眉山大火成岩省东部。该玄武岩全岩SiO2的含量为44.5%~50.04%,TiO2的含量为2.38%~2.74%,MgO的含量为5.74%~7.96%, Mg#值较低为0.40~0.49,Na2O含量高,为4.81%~7.19%,并且Na2O/K2O>4,属于钠质粗面玄武岩即夏威夷岩。具有ΣREE富集的右倾型稀土元素分布模式,稀土和微量元素特征和Pb同位素特征显示洋岛玄武岩OIB的地球化学特征,(87Sr/86Sr)i=0.70482~0.70503,εNd(t)和(206Pb/204Pb)<em>t变化范围较窄:1.3~1.8和17.21~17.62。与贵州威宁黑石头和织金二叠纪玄武岩比较,水城玄武岩富碱,TiO2含量低,Na2O、MgO和Al2O3含量高,造成峨眉山大火成岩省东部贵州境内三个地方玄武岩不同性质的主要原因是由于地幔源区不同,分离结晶程度和地壳混染程度的不同,水城玄武岩来源于交代富集地幔,是峨眉山地幔柱上升至石榴石稳定区发生部分熔融,地幔柱的部分熔融体和富含挥发分的大陆岩石圈地幔混合,在上升到地表过程中受到轻微的地壳混染所形成。 相似文献
115.
Volcanism in the Vitim Volcanic Field, Siberia: Geochemical Evidence for a Mantle Plume Beneath the Baikal Rift Zone 总被引:5,自引:1,他引:5
JOHNSON J. S.; GIBSON S. A.; THOMPSON R. N.; NOWELL G. M. 《Journal of Petrology》2005,46(7):1309-1344
The Baikal Rift is a zone of active lithospheric extension adjacentto the Siberian Craton. The 616 Myr old Vitim VolcanicField (VVF) lies approximately 200 km east of the rift axisand consists of 5000 km3 of melanephelinites, basanites, alkaliand tholeiitic basalts, and minor nephelinites. In the volcanicpile, 142 drill core samples were used to study temporal andspatial variations. Variations in major element abundances (e.g.MgO = 3·314·6 wt %) reflect polybaric fractionalcrystallization of olivine, clinopyroxene and plagioclase. 87Sr/86Sri(0·70390·7049), 143Nd/144Ndi (0·51270·5129)and 176Hf/177Hfi (0·28290·2830) ratiosare similar to those for ocean island basalts and suggest thatthe magmas have not assimilated significant amounts of continentalcrust. Variable degrees of partial melting appear to be responsiblefor differences in Na2O, P2O5, K2O and incompatible trace elementabundances in the most primitive (high-MgO) magmas. Fractionatedheavy rare earth element (HREE) ratios (e.g. [Gd/Lu]n > 2·5)indicate that the parental magmas of the Vitim lavas were predominantlygenerated within the garnet stability field. Forward major elementand REE inversion models suggest that the tholeiitic and alkalibasalts were generated by decompression melting of a fertileperidotite source within the convecting mantle beneath Vitim.Ba/Sr ratios and negative K anomalies in normalized multi-elementplots suggest that phlogopite was a residual mantle phase duringthe genesis of the nephelinites and basanites. Relatively highlight REE (LREE) abundances in the silica-undersaturated meltsrequire a metasomatically enriched lithospheric mantle source.Results of forward major element modelling suggest that meltingof phlogopite-bearing pyroxenite veins could explain the majorelement composition of these melts. In support of this, pyroxenitexenoliths have been found in the VVF. High Cenozoic mantle potentialtemperatures (1450°C) predicted from geochemical modellingsuggest the presence of a mantle plume beneath the Baikal RiftZone. KEY WORDS: Baikal Rift; mafic magmatism; mantle plume; metasomatism; partial melting 相似文献
116.
《地学前缘(英文版)》2020,11(4):1133-1144
The Shatsky and Hess Rises,the Mid-Pacific Mountains and the Line Islands large igneous provinces(LIPs) present different challenges to conventional plume models.Resolving the genesis of these LIPs is important not only for a more complete understanding of mantle plumes and plume-generated magmatism,but also for establishing the role of subducted LIP conjugates in the evolution of the Laramide orogeny and other circum-Pacific orogenic events,which are related to the development of large porphyry systems.Given past difficulties in developing consistent geodynamic models for these LIPs,it is useful to consider whether viable alternative geodynamic scenarios may be provided by recent concepts such as melt channel networks and channel-associated lineaments,along with the "two mode"model of melt generation,where a deeply-sourced channel network is superimposed on the plume,evolving and adapting over millions of years.A plume may also interact with transform faults in close proximity to a mid ocean ridge,with the resultant bathymetric character strongly affected by the relative age difference of lithosphere across the fault.Our results suggest that the new two-mode melt models resolve key persistent issues associated with the Shatsky Rise and other LIPs and provide evidence for the existence of a conduit system within plumes that feed deeply-sourced material to the plume head,with flow maintained over considerable distances.The conduit system eventually breaks down during plume-ridge separation and may do so prior to the plume head being freed from the triple junction or spreading ridge.There is evidence for not only plume head capture by a triple junction but also for substantial deformation of the plume stem as the distance between the stem and anchored plume head increases.The evidence suggests that young transforms can serve as pathways for plume material migration,at least in certain plume head-transform configurations.A fortuitous similarity between the path of the Shatsky and Sio plumes,with respect to young spreading ridges and transforms,helps to clarify previously problematic bathymetric features that were not readily ascribed to fixed plumes alone.The Line Island Chain,which has been the subject of a vast number of models,is related mainly to several plumes that passed beneath the same region of oceanic crust,a relatively rare event that has resulted in LIP formation rather than a regular seamount track.Our findings have important implications for the timing and mechanism for the Laramide Orogeny in North America,demonstrating that the Hess Rise conjugate may be much smaller than traditionally thought.The Mid Pacific Mountains conjugate may not exist at all,given large parts of these LIPs were formed at an ‘off-ridge' site.This needs to be taken into account while considering the effects of conjugate collision on mineralization and orogenic events. 相似文献
117.
The North China Craton(NCC)hosts some of the world-class gold deposits that formed more than 2 billion years after the major orogenic cycles and cratonization.The diverse models for the genesis of these deposits remain equivocal,and mostly focused on the craton margin examples,although synchronous deposits formed in the interior domains.Here we adopt an integrated geological and geophysical perspective to evaluate the possible factors that contributed to the formation of the major gold deposits in the NCC.In the Archean tectonic framework of the NCC,the locations of the major gold deposits fall within or adjacent to greenstone belts or the margins of micro-continents.In the Paleoproterozoic framework,they are markedly aligned along two major collisional sutures-the Trans North China Orogen and the Jiao-Liao-Ji Belt.Since the Mesozoic intrusions hosting these deposits do not carry adequate signals for the source of gold,we explore the deep roots based on available geophysical data.We show that the gold deposits are preferentially distributed above zones of uplifted MOHO and shallow LAB corresponding to thinned crust and eroded sub-lithospheric mantle,and that the mineralization is located above regions of high heat flow representing mantle upwelling.The NCC was at the center of a multi-convergent regime during the Mesozoic which intensely churned the mantle and significantly en riched it.The geophysical data on Moho and LAB upwarp from the centre towards east of the craton is more consistent with paleo-Pacific slab subduction from the east exerting the dominant control on lithospheric thinning.Based on these results,and together with an evaluation of the geochemical and isotopic features of the Mesozoic magmatic intrusions hosting the gold mineralization,we propose a genetic model that invokes reworking of ancient Au archives preserved in the lower crust and metasomatised upper mantle and which were generated through multiple subduction,underplating and cumulation events associated with cratonization of the NCC as well as the subduction-collision of Yangtze Craton with the NCC.The heat and material input along zones of heterogeneously thinned lithosphere from a rising turbulent mantle triggered by Mesozoic convergent margins surrounding the craton aided in reworking the deep roots of the ancient Au reservoirs,leading to the major gold metallogeny along craton margins as well as in the interior of the NCC. 相似文献
118.
伊通地堑上地幔剪切带 总被引:3,自引:1,他引:3
通过研究糜棱岩型幔源包体的变形显微构造、位错亚构造及组构特征,确定它是上地幔剪切带的代表物质。该带形成温度为729~828℃、压力为1.10~1.38GPa、差异应力为97~150MPa、应变速率为IO ̄(-14)~1O ̄(-12)s ̄(-1)、等效粘滞度为10~1000EPa·s和深度为37~45km。这是一种与地幔底辟作用有关的规模较小的缓倾斜剪切带,也是应变集中带,能导致上地幔地震波速各向异性,并与地震活动有关 相似文献
119.
Philippe Machetel 《Comptes Rendus Geoscience》2003,335(1):91-97
The numerical models of mantle convection agree to depict avalanches behaviour according to the level of endothermicity of the spinel → perovskite phase change. Their potential effects on the global thermal and dynamical states of the mantle have been computed thanks to a numerical code, which takes into account both the 400-km exothermic and the 660-km endothermic phase changes. The cycle followed by the avalanches is: local layering, destabilization of the 660-km thermal layer, travelling and spreading on the core, and reappearing of the local layering. Therefore, mantle convection is characterized by quiet periods of partial layering embedded in catastrophic events. During the avalanche, the amplitude of the surface velocity is multiplied by two, which would imply an enhanced plate tectonic and ridge activities. The global thermal effects of the avalanche are compatible with a high mantle temperature and an acceleration of Earth's rotation during the Cretaceous. They also offer a coherent explanation to locate the origin of mantle plumes both within the CMB and just below the transition zone. 相似文献
120.
Kyu Han Kim Keisuke Nagao Hirochika Sumino Tsuyoshi Tanaka Takamasa Hayashi Toshio Nakamura Jong Ik Lee 《Chemical Geology》2008,253(3-4):180-195
We report analyses of noble gases and Nd–Sr isotopes in mineral separates and whole rocks of late Pleistocene (< 0.2 Ma) monzonites from Ulleungdo, South Korea, a volcanic island within the back arc basin of the Japan island arc. A Rb–Sr mineral isochron age for the monzonites is 0.12 ± 0.01 Ma. K–Ar biotite ages from the same samples gave relatively concordant ages of 0.19 ± 0.01and 0.22 ± 0.01 Ma. 40Ar/39Ar yields a similar age of 0.29 ± 0.09 Ma. Geochemical characteristics of the felsic plutonic rocks, which are silica oversaturated alkali felsic rocks (av., 12.5 wt% in K2O + Na2O), are similar to those of 30 alkali volcanics from Ulleungdo in terms of concentrations of major, trace and REE elements. The initial Nd–Sr isotopic ratios of the monzonites (87Sr/86Sr = 0.70454–0.71264, 143Nd/144Nd = 0.512528–0.512577) are comparable with those of the alkali volcanics (87Sr/86Sr = 0.70466–0.70892, 143Nd/144Nd = 0.512521–0.512615) erupted in Stage 3 of Ulleungdo volcanism (0.24–0.47 Ma). The high initial 87Sr/86Sr values of the monzonites imply that seawater and crustally contaminated pre-existing trachytes may have been melted or assimilated during differentiation of the alkali basaltic magma.A mantle helium component (3He/4He ratio of up to 6.5 RA) associated with excess argon was found in the monzonites. Feldspar and biotite have preferentially lost helium during slow cooling at depth and/or during their transportation to the surface in a hot host magma. The source magma noble gas isotopic features are well preserved in fluid inclusions in hornblende, and indicate that the magma may be directly derived from subcontinental lithospheric mantle metasomatized by an ancient subduction process, or may have formed as a mixture of MORB-like mantle and crustal components. The radiometric ages, geochemical and Nd–Sr isotopic signatures of the Ulleungdo monzonites as well as the presence of mantle-derived helium and argon, suggests that these felsic plutonic rocks evolved from alkali basaltic magma that formed by partial melting of subcontinental lithospheric mantle beneath the back arc basin located along the active continental margin of the southeastern part of the Eurasian plate. 相似文献