全文获取类型
收费全文 | 1007篇 |
免费 | 117篇 |
国内免费 | 278篇 |
专业分类
测绘学 | 3篇 |
大气科学 | 1篇 |
地球物理 | 20篇 |
地质学 | 1292篇 |
海洋学 | 41篇 |
综合类 | 31篇 |
自然地理 | 14篇 |
出版年
2024年 | 10篇 |
2023年 | 18篇 |
2022年 | 20篇 |
2021年 | 35篇 |
2020年 | 36篇 |
2019年 | 33篇 |
2018年 | 29篇 |
2017年 | 49篇 |
2016年 | 39篇 |
2015年 | 33篇 |
2014年 | 109篇 |
2013年 | 59篇 |
2012年 | 94篇 |
2011年 | 99篇 |
2010年 | 78篇 |
2009年 | 75篇 |
2008年 | 68篇 |
2007年 | 63篇 |
2006年 | 59篇 |
2005年 | 46篇 |
2004年 | 33篇 |
2003年 | 44篇 |
2002年 | 45篇 |
2001年 | 45篇 |
2000年 | 34篇 |
1999年 | 28篇 |
1998年 | 24篇 |
1997年 | 25篇 |
1996年 | 17篇 |
1995年 | 11篇 |
1994年 | 11篇 |
1993年 | 6篇 |
1992年 | 11篇 |
1991年 | 9篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1987年 | 3篇 |
1978年 | 1篇 |
排序方式: 共有1402条查询结果,搜索用时 15 毫秒
31.
拿若铜(金)矿床是多龙矿集区内继多不杂斑岩铜(金)矿、波龙斑岩铜(金)矿之后又一取得重大找矿突破的大型斑岩型矿床。作者以矿区探矿工程分析数据为基础,研究各成矿元素空间分布规律。成矿元素在垂向上的分带特征不明显,在平面上分带特征较显著,表现为自矿区中心ZK0001,向南西方向具有Cu+Au-Cu(Au、Ag)→Cu(Ag、Au)-Cu(Ag)的分带特征。同时,矿区土壤地球化学测量显示,从0线开始至31线(北东→南西)具有Mo、Cu→Mo(Cu、Au)→Cu、Au(Ag、Mo、Pb)→Pb→Pb、Zn分带特征,显示物质来源和热源位于0线附近,成矿流体是以0线、7线一带向四周运移,并具有从北东向南西方向运移的特点。通过矿床地质特征、元素分带特征研究,建立了矿区地球化学勘查模型。 相似文献
32.
滇东北地区钼镍多金属矿床主要产于下寒武统筇竹寺组黑色页岩、黑色粉砂岩地层中,矿体与围岩界线明显,呈似层状、层状产出,为层控矿床。矿体厚度薄、品位高,但往深部有变富、变厚的趋势. 相似文献
33.
白银厂黄铁矿型铜、多金属矿床综合勘查模型 总被引:1,自引:0,他引:1
在综合以往大量资料的基础上,补做钻孔原生晕、物性和物化探综合剖面工作,经理论模型正演,归纳概括出白银厂黄铁矿型铜、多金属矿床、矿田地质—地球物理—地球化学综合勘查模型,并对矿床、矿田按剥蚀程度不同分别提出预测标志。 相似文献
34.
文章介绍区域地质背景、矿区地物化特征,对成矿时代、流体包裹体特征进行初步研究,并指出找矿远景,希望对矿区的矿产勘查具有借鉴和指导意义。 相似文献
35.
The Neoproterozoic Katangan Supergroup comprises a thick sedimentary rock succession subdivided into the Roan, Nguba, and Kundelungu Groups, from bottom to top. Deposition of both Nguba and Kundelungu Groups began with diamictites, the Mwale/Grand Conglomérat and Kyandamu/Petit Conglomérat Formations, respectively, correlated with the 750 Ma Sturtian and (supposedly) 620 Ma Marinoan/Varanger glacial events. The Kaponda, Kakontwe, Kipushi and Lusele Formations are interpreted as cap-carbonates overlying the diamictites. Petrographical features of the Nguba and Kundelungu siliciclastic rocks indicate a proximal facies in the northern areas and a basin open to the south. The carbonate deposits increase southward in the Nguba basin. In the southern region, the Kyandamu Formation contains clasts from the underlying rocks, indicating an exhumation and erosion of these rocks to the south of the basin. It is inferred that this formation deposited in a foreland basin, dating the inversion from extensional to compressional tectonics, and the northward thrusting. Sampwe and Biano sedimentary rocks were deposited in the northernmost foreland basin at the end of the thrusting. The Zn–Pb–Cu and Cu–Ag–Au epigenetic, hypogene deposits occurring in Nguba carbonates and Kundelungu clastic rocks probably originate from hydrothermal resetting and remobilization of pre-existing stratiform base metal mineralisations in the Roan Group. 相似文献
36.
江西省兴源冲地区处于九岭南缘逆冲推覆构造系中,NEE向的慈化—宜丰板缘深断裂带及大型推(滑)覆构造西段向南呈弧型转弯并与湘赣边界的NNE向走滑推覆冲断带复合,形成了对铜多金属矿成矿有利的异常构造、岩浆岩、矿源层及赋矿层、矿化异常等控矿因素耦合区。该区具有明显的地、物、化、遥找矿信息:区域1∶20万和1∶5万水系沉积物测量显示Cu,Pb,Zn高异常区;1∶2.5万和1∶1万土壤地化测量已圈定出Cu,Pb,Zn,Au,Ag元素异常多处,综合异常4处;1∶1万激电异常明显;少量探槽、钻孔控制求得333+3341资源量已具小型规模。根据成矿地质条件及物、化异常分析,该区深部找矿潜力较大,有望扩大为中型以上规模铜矿床。 相似文献
37.
38.
Li‐Juan Du Bo Li Zhi‐Long Huang Jun Chen Jia‐Xi Zhou Guo‐Fu Zou Zai‐Fei Yan 《Resource Geology》2020,70(1):28-49
The Yangla deposit is an intrusion‐related Cu deposit in the Jinshajiang tectonic belt (eastern Sanjiang region, SW China). Despite extensive studies that have been conducted on this deposit, the relationship between the granitic magma and Cu mineralization is still unclear, and hence, the genesis is debated. To answer this question, we conducted an integrated study of mineralogy, fluid inclusions (FIs), and hydrogen and oxygen (H‐O) isotopes. Three mineralization stages were identified based on the ore textures, alteration zonation, and crosscutting relationships: (i) pre‐ore prograde skarn (stage I), with the garnet and pyroxene dominated by andradite and diopside, respectively; (ii) syn‐ore retrograde alteration (stage II), which is subdivided into the early syn‐ore stage (stage IIa) marked by retrograde hydrated mineral assemblages and significant Fe‐Cu‐Mo‐Pb‐Zn sulfide mineralization, and the late syn‐ore stage (stage IIb) featured by quartz‐calcite veins; and (iii) late supergene mineralization (stage III), which is characterized by secondary azurite and malachite. These results of mineralogy, FIs, and H‐O isotopes indicate that: (i) Cu mineralization has a close temporal, spatial, and genetic relationship with skarn alteration; (ii) the ore fluids were magmatic dominated with late‐stage meteoric water incursion; and (iii) Type‐S (halite‐bearing) and Type‐V (vapor‐rich) FIs coexisted in garnet and clinopyroxene of stage I, indicating that fluid boiling might have occurred during this stage. From stage I to stage IIa, the FI type transformed from Type‐S + Type‐V + Type‐L (liquid‐rich) to Type‐V + Type‐L with the conduct of mineralization and was accompanied by the disappearance of Type‐S, and homogenization temperature and salinity also tended to decrease dramatically, which may be caused by the deposition of skarn minerals. At stage IIa, boiling of the ore fluids still continued due to the change from lithostatic to hydrostatic pressure, which triggered the precipitation of abundant quartz‐Cu‐Mo‐Fe sulfides. Furthermore, fluid mixing between a high‐temperature magmatic fluid and a low‐temperature meteoric water might cause a considerable drop in temperature and the deposition of Cu‐bearing quartz/calcite veins during stage IIb. Hence, we consider the Yangla deposit to be of a skarn type, genetically related to the Mesozoic magmatism in the Sanjiang region. 相似文献
39.
40.
A. R. Cherry V. S. Kamenetsky J. McPhie J. M. Thompson K. Ehrig S. Meffre 《Australian Journal of Earth Sciences》2018,65(5):643-659
The Olympic iron oxide–copper–gold province in South Australia contains numerous deposits and prospects, including the Olympic Dam Cu–U–Au–Ag deposit and the Acropolis prospect. The Acropolis prospect comprises massive, coarse-grained magnetite–apatite veins partly replaced by a hematite-stable assemblage. The apatite grains in the veins contain zones with abundant inclusions of other minerals (including monazite and xenotime) and low trace-element concentrations relative to the inclusion-free zones. The inclusion-rich apatite zones are interpreted to be formed from the recrystallisation of the inclusion-free apatite and remobilisation of U, Th and rare earth element (REE) from apatite into monazite and xenotime. Apatite, monazite and xenotime are all established U–Th–Pb geochronometers and offer the potential to constrain the alteration history of the Acropolis prospect. The LA-ICPMS U–Pb age of inclusion-free apatite is within error of the age of the host volcanic units (ca 1.59 Ga). Inclusion-rich apatite yields both near-concordant analyses that are within error of the inclusion-free apatite as well as highly disturbed (discordant) analyses. The most concordant analyses of monazite (Th–Pb) inclusions and xenotime (U–Pb) inclusions and rim grains indicate an alteration event occurred at ca 1.37 Ga and possibly also at ca 500 Ma. The disparity in age of the inclusion-rich apatite and the REE-phosphate inclusions (and rim grains) is suggested to be owing to the apatite being initially recrystallised at ca 1.59 Ga and modified again by a later event that also formed (or coarsened) most of the inclusions. Partial resetting of the majority of the monazite inclusions as well as the presence of significant amounts of common Pb has complicated the interpretation of the monazite results. In contrast, xenotime is a more robust geochronometer in this setting. The ages of the two post-1.59 Ga events that appear to have affected the Acropolis prospect do not correspond to any events known to have occurred in the Gawler Craton. The earlier (ca 1.37 Ga) age instead corresponds best with metamorphic–magmatic–hydrothermal activity in Laurentia, consistent with the proximity of Laurentia and the Gawler Craton inferred from palaeogeographic reconstructions. The later (ca 500 Ma) event corresponds to the Delamerian Orogeny and has been shown by prior studies to have also affected the Olympic Dam deposit. 相似文献