首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1755篇
  免费   439篇
  国内免费   450篇
测绘学   20篇
大气科学   3篇
地球物理   642篇
地质学   1423篇
海洋学   146篇
天文学   247篇
综合类   61篇
自然地理   102篇
  2024年   12篇
  2023年   31篇
  2022年   52篇
  2021年   74篇
  2020年   60篇
  2019年   81篇
  2018年   56篇
  2017年   58篇
  2016年   62篇
  2015年   51篇
  2014年   109篇
  2013年   146篇
  2012年   62篇
  2011年   117篇
  2010年   93篇
  2009年   130篇
  2008年   166篇
  2007年   151篇
  2006年   106篇
  2005年   94篇
  2004年   89篇
  2003年   82篇
  2002年   70篇
  2001年   61篇
  2000年   75篇
  1999年   81篇
  1998年   60篇
  1997年   55篇
  1996年   57篇
  1995年   47篇
  1994年   45篇
  1993年   31篇
  1992年   31篇
  1991年   24篇
  1990年   32篇
  1989年   20篇
  1988年   24篇
  1987年   10篇
  1986年   9篇
  1985年   10篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1978年   6篇
  1977年   1篇
  1954年   3篇
排序方式: 共有2644条查询结果,搜索用时 406 毫秒
171.
简河清 《世界地质》1998,17(3):83-85
膨胀土由于粘土矿物含量较多,在一定气候条件下其体积随含水量的增加而膨胀,随含水一的减少而收缩,以膨胀土为地基的低层建筑物常常成群开裂,笔者首次报道了马鞍山地区的膨胀土,并对该区膨胀土的分布,成因,评价方法和防治措施等提出了初步看法。  相似文献   
172.
Little is known of Holocene landform development in Upland Britain. This paper describes a site at Middle Langdale in the Howgill Fells of Cumbria where large, but now stabilized and inactive gullies cut through periglacial material. At the base of the gullies large debris cones have buried earlier alluvial sediments on the valley floor. On these sediments and buried by the debris cones is a well-developed organic soil from which two 14C dates have been obtained in an attempt to estimate the age range of the soil. These dates range from 2580±55 years BP for the fine particulate fraction from the base of the organic horizon to 940±95 years BP for fossil rootlets from the uppermost organic layer, immediately below the overlying debris cones. The pollen evidence suggests that the valley floor site was initially dominated by alder carr and later by a Juncus marsh with birch, alder and hazel nearby. The pollen, from the surrounding upland area suggests woodland on the valley sides, dominated by oak and elm that was later replaced by a more open environment rich in heath species and in which disturbed ground species were present. The magnetic evidence indicates a stable local environment during soil formation but shows a sudden inwash of unweathered debris at the top of the buried soil. The evidence suggests that the valley floor was geomorphologically stable throughout the period of soil formation, although there was a local change in valley floor vegetation and a reduction of woodland cover on the valley sides at sometime during the period. The evidence then points to major geomorphological changes; a wave of soil erosion, gully development and debris cone deposition, perhaps following the Scandinavian introduction of sheep farming in the tenth century A.D.  相似文献   
173.
It is shown that in strongly magnetized neutron stars, there exist upper limits of magnetic field strength, beyond which the self energies for both neutron and proton components of neutron star matter become complex in nature. As a consequence they decay within the strong interaction time scale. However, in the ultra-strong magnetic field case, when the zeroth Landau level is only occupied by protons, the system again becomes stable against strong decay.   相似文献   
174.
Ilan Roth   《Planetary and Space Science》2007,55(15):2319-2323
Direct observations or deduced analysis indicate clearly that formation of intense fluxes of relativistic electrons is an important ingredient in the evolution of numerous active magnetized plasma systems. Examples of relativistic electron energization include the recovery phase of a planetary magnetic storm, post solar flare coronal activity and the afterglow of gamma ray bursts. It is suggested that there exists a universal mechanism, which may explain electron energization at the vastly different magnetized plasma environments. The favorite configuration consists of an inhomogeneous magnetic field anchored at a given magnetic structure and excitation of whistler waves due to external injection of low-energy non-isotropic electrons. The energization proceeds as a bootstrap process due to interaction with the propagating whistler waves along the inhomogeneous magnetic field.  相似文献   
175.
The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity, which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled by neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 – 10 November 2004. This MC was embedded in an ICME. After determining an approximate orientation for the flux rope using the minimum variance method, we obtain a precise orientation of the cloud axis by relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the inbound and outbound branches and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). The MC is also studied using dynamic models with isotropic expansion. We have found (6.2±1.5)×1020 Mx for the axial flux and (78±18)×1020 Mx for the azimuthal flux. Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted by considering the existence of a previously larger flux rope, which partially reconnected with its environment in the front. We estimate that the reconnection process started close to the Sun. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).  相似文献   
176.
The solar atmosphere displays a wide variety of dynamic phenomena driven by the interaction of magnetic fields and plasma. In particular, plasma jets in the solar chromosphere and corona, coronal heating, solar flares and coronal mass ejections all point to the presence of magnetic phenomena such as reconnection, flux cancellation, the formation of magnetic islands, and plasmoids. While we can observe the signatures and gross features of such phenomena we cannot probe the essential physics driving them, given the spatial resolution of current instrumentation. Flexible and well-controlled laboratory experiments, scaled to solar parameters, open unique opportunities to reproduce the relevant unsteady phenomena under various simulated solar conditions. The ability to carefully control these parameters in the laboratory allows one to diagnose the dynamical processes which occur and to apply the knowledge gained to the understanding of similar processes on the Sun, in addition directing future solar observations and models. This talk introduces the solar phenomena and reviews the contributions made by laboratory experimentation.  相似文献   
177.
It is shown that the drift waves near the light cylinder can cause the modulation of emission with periods of order several seconds. These periods explain the intervals between successive pulses observed in AXPs, SGRs and radio pulsars with long periods. The model under consideration gives the possibility to calculate real rotation periods P of host neutron stars. It is shown that P≤1 s for the investigated objects. The magnetic fields at the surface of the neutron star are of order 1011–1013 G and equal to the fields usual for the known radio pulsars.   相似文献   
178.
Interplanetary magnetic clouds (MCs) are one of the main sources of large non-recurrent geomagnetic storms. With the aid of a force-free flux rope model, the dependence of the intensity of geomagnetic activity (indicated by Dst index) on the axial orientation (denoted by θ and φ in GSE coordinates) of the magnetic cloud is analyzed theoretically. The distribution of the Dst values in the (θ, φ) plane is calculated by changing the axial orientation for various cases. It is concluded that (i) geomagnetic storms tend to occur in the region of θ<0°, especially in the region of θ≲−45°, where larger geomagnetic activity could be created; (ii) the intensity of geomagnetic activity varies more strongly with θ than with φ; (iii) when the parameters B 0 (the magnetic field strength at the flux rope axis), R 0 (the radius of the flux rope), or V (the bulk speed) increase, or |D| (the shortest distance between the flux rope axis and the x-axis in GSE coordinates) decreases, a flux rope not only can increase the intensity of geomagnetic activity, but also is more likely to create a storm, however the variation of n (the density) only has a little effect on the intensity; (iv) the most efficient orientation (MEO) in which a flux rope can cause the largest geomagnetic activity appears at φ∼0° or ∼ 180°, and some value of θ which depends mainly on D; (v) the minimum Dst value that could be caused by a flux rope is the most sensitive to changes in B 0 and V of the flux rope, and for a stronger and/or faster MC, a wider range of orientations will be geoeffective. Further, through analyzing 20 MC-caused moderate to large geomagnetic storms during 1998 – 2003, a long-term prediction of MC-caused geomagnetic storms on the basis of the flux rope model is proposed and assessed. The comparison between the theoretical results and the observations shows that there is a close linear correlation between the estimated and observed minimum Dst values. This suggests that using the ideal flux rope to predict practical MC-caused geomagnetic storms is applicable. The possibility of the long-term prediction of MC-caused geomagnetic storms is discussed briefly.  相似文献   
179.
Hypothesis of possible superconductivity of the iced matter of the rings of Saturn (based on the data of Voyager and Pioneer space missions) allow us to explain many phenomena which have not been adequately understood earlier. Introducing into planetary physics force of magnetic levitation of the superconducting iced particle of the rings, which interact with magnetosphere of the planet, becomes to be possible to explain origin, evolution, and dynamics of the rings; to show how the consequent precipitation of the rings’ matter upon the planet was concluded; how the rings began their rotation; how they were compressed by the magnetic field into the thin disc, and how this disc was fractured into hundreds of thousands of separated rings; why in the ring B do exist “spokes”; why magnetic field lines have distortion near by ring F; why there is a variable azimuth brightness of the ring A; why the rings reflected radio waves so efficiently; why exists strong electromagnetic radiation of the rings in the 20.4 kHz–40.2 MHz range and Saturnian kilometric radiation; why there is anomalous reflection of circularly polarized microwaves; why there are spectral anomalies of the thermal radiation of the rings; why the matter of the various rings does not mix but preserves its small-scale color differences; why there is an atmosphere of unknown origin nearby the rings of Saturn; why there are waves of density and bending waves within Saturn’s rings; why planetary rings in the solar system appear only after the Belt of Asteroids (and may be the Belt of Asteroids itself is a ring for the Sun); why our planet Earth has no rings of its own.  相似文献   
180.
本文在用Unno-Beckers方程计算光球和黑子本影磁场内FeIλ5324.19谱线形成过程中,计算了该谱线Stokes参数随5000连续谱光学深度分布的贡献函数及形成深度随波长的变化。计算结果表明:磁光效应的存在给该线横向磁场定标参数Q、U的形成深度的确定带来一定的复杂性,对I和V的形成深度的确定没有明显的影响。结合北京天文台太阳磁场望远镜半宽0.15的双折射滤光器,确定所观测磁场信息的形成深度。当对日面中心观测,在滤光器调至线心时,I形成在光球层及黑子高度100公里左右,在偏离线心0.15时V分量形成高度亦如此,Q、U分量的情况较复杂。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号