首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1771篇
  免费   469篇
  国内免费   174篇
测绘学   176篇
大气科学   76篇
地球物理   762篇
地质学   883篇
海洋学   91篇
天文学   247篇
综合类   66篇
自然地理   113篇
  2024年   2篇
  2023年   9篇
  2022年   32篇
  2021年   48篇
  2020年   50篇
  2019年   54篇
  2018年   46篇
  2017年   66篇
  2016年   76篇
  2015年   69篇
  2014年   98篇
  2013年   136篇
  2012年   76篇
  2011年   143篇
  2010年   105篇
  2009年   138篇
  2008年   162篇
  2007年   126篇
  2006年   116篇
  2005年   85篇
  2004年   88篇
  2003年   71篇
  2002年   74篇
  2001年   44篇
  2000年   50篇
  1999年   54篇
  1998年   53篇
  1997年   43篇
  1996年   58篇
  1995年   42篇
  1994年   27篇
  1993年   32篇
  1992年   32篇
  1991年   23篇
  1990年   20篇
  1989年   12篇
  1988年   15篇
  1987年   8篇
  1986年   8篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1954年   3篇
排序方式: 共有2414条查询结果,搜索用时 31 毫秒
181.
Daisuke Kobayashi 《Icarus》2010,210(1):37-42
The crustal magnetic anomalies on Mars may represent hot spot tracks resulting from lithospheric drift on ancient Mars. As evidence, an analysis of lineation patterns derived from the ΔBr magnetic map is presented. The ΔBr map, largely free of external magnetic field effects, allows excellent detail of the magnetic anomaly pattern, particularly in areas of Mars where the field is relatively weak. Using cluster analysis, we show that the elongated anomalies in the martian magnetic field form concentric small circles (parallels of latitude) about two distinct north pole locations. If these pole locations represent ancient spin axes, then tidal force on the early lithosphere by former satellites in retrograde orbits may have pulled the lithosphere in an east-west direction over hot mantle plumes. With an active martian core dynamo, this may have resulted in the observed magnetic anomaly pattern of concentric small circles. As further evidence, we observe that, of the 15 martian giant impact basins that were possibly formed while the core dynamo was active, seven lie along the equators of our two proposed paleopoles. We also find that four other re-magnetized giant impact basins lie along a great circle about the mean magnetic paleopole of Mars. These 11 impact basins, likely the result of fallen retrograde satellite fragments, indicate that Mars once had moons large enough to cause tidal drag on the early martian lithosphere. The results of this study suggest that the magnetic signatures of this tidal interaction have been preserved to the present day.  相似文献   
182.
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases, the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury’s magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury’s magnetosphere.  相似文献   
183.
The “paraboloid” model of Mercury’s magnetospheric magnetic field is used to determine the best-fit magnetospheric current system and internal dipole parameters from magnetic field measurements taken during the first and second MESSENGER flybys of Mercury on 14 January and 6 October 2008. Together with magnetic field measurements taken during the Mariner 10 flybys on 29 March 1974 and 16 March 1975, there exist three low-latitude traversals separated in longitude and one high-latitude encounter. From our model formulation and fitting procedure a Mercury dipole moment of 196 nT ·  (where RM is Mercury’s radius) was determined. The dipole is offset from Mercury’s center by 405 km in the northward direction. The dipole inclination to Mercury’s rotation axis is relatively small, ∼4°, with an eastern longitude of 193° for the dipole northern pole. Our model is based on the a priori assumption that the dipole position and the moment orientation and strength do not change in time. The root mean square (rms) deviation between the Mariner 10 and MESSENGER magnetic field measurements and the predictions of our model for all four flybys is 10.7 nT. For each magnetic field component the rms residual is ∼6 nT or about 1.5% of the maximum measured magnetic field, ∼400 nT. This level of agreement is possible only because the magnetospheric current system parameters have been determined separately for each flyby. The magnetospheric stand-off distance, the distance from the planet’s center to the inner edge of the tail current sheet, the tail lobe magnetic flux, and the displacement of the tail current sheet relative to the Mercury solar-magnetospheric equatorial plane have been determined independently for each flyby. The magnetic flux in the tail lobes varied from 3.8 to 5.9 MWb; the subsolar magnetopause stand-off distance from 1.28 to 1.43 RM; and the distance to the inner edge of the current sheet from 1.23 to 1.32 RM. The differences in the current systems between the first and second MESSENGER flybys are attributed to the effects of strong magnetic reconnection driven by southward interplanetary magnetic field during the latter flyby.  相似文献   
184.
The current sheet in Earth’s magnetotail often flaps, and the flapping waves could be induced propagating towards the dawn and dusk flanks, which could make the current sheet dynamic. To explore the dynamic characteristics of current sheet associated with the flapping motion holistically and provide reasonable physical interpretations, detailed direct calculation and analysis have been applied to one approximate analytic model of magnetic field in the flapping current sheet. The main results from the model demonstrate: (1) the magnetic fluctuation amplitude is attenuated from the center of current sheet to the lobe regions; The larger wave amplitude would induce the larger magnetic amplitude; (2) the curvature of magnetic field lines (MFLs), with maximum at the center of current sheet, is only dependent on the displacement Z along the south-north direction from the center of current sheet, regardless of the tilt of current sheet; (3) the half-thickness of neutral sheet, h, the minimum curvature radius of MFLs, Rcmin, and the tilt angle of current sheet, δ, satisfies h=Rcmin cos δ; (4) the gradient of magnetic strength forms a double-peak profile, and the peak value would be more intense if the local current sheet is more tilted; (5) current density j and its jy, jz components reach the extremum at the center of CS. j and jz would be more intense if the local current sheet is more tilted, but it is not the case for jy; and (6) the field-aligned component of current density mainly appears in the neutral sheet, and the sign of it would change alternatively as the flapping waves passing by. To check the validity of the model, one simulation on the virtual measurements has been made, and the results are in well consistence with actual observations of Cluster.  相似文献   
185.
Using nine years of solar wind plasma and magnetic field data from the Wind mission, we investigated the characteristics of both magnetic clouds (MCs) and magnetic cloud-like structures (MCLs) during 1995 – 2003. A MCL structure is an event that is identified by an automatic scheme (Lepping, Wu, and Berdichevsky, Ann. Geophys. 23, 2687, 2005) with the same criteria as for a MC, but it is not usually identifiable as a flux rope by using the MC (Burlaga et al., J. Geophys. Res. 86, 6673, 1981) fitting model developed by Lepping, Jones, and Burlaga (Geophys. Res. Lett. 95(11), 957, 1990). The average occurrence rate is 9.5 for MCs and 13.6 for MCLs per year for the overall period of interest, and there were 82 MCs and 122 MCLs identified during this period. The characteristics of MCs and MCL structures are as follows: (1) The average duration, Δt, of MCs is 21.1 h, which is 40% longer than that for MCLs (Δt=15 h); (2) the average (minimum B z found in MC/MCL measured in geocentric solar ecliptic coordinates) is −10.2 nT for MCs and −6 nT for MCLs; (3) the average Dstmin  (minimum Dst caused by MCs/MCLs) is −82 nT for MCs and −37 nT for MCLs; (4) the average solar wind velocity is 453 km s−1 for MCs and 413 km s−1 for MCLs; (5) the average thermal speed is 24.6 km s−1 for MCs and 27.7 km s−1 for MCLs; (6) the average magnetic field intensity is 12.7 nT for MCs and 9.8 nT for MCLs; (7) the average solar wind density is 9.4 cm−3 for MCs and 6.3 cm−3 for MCLs; and (8) a MC is one of the most important interplanetary structures capable of causing severe geomagnetic storms. The longer duration, more intense magnetic field and higher solar wind speed of MCs, compared to those properties of the MCLs, are very likely the major reasons for MCs generally causing more severe geomagnetic storms than MCLs. But the fact that a MC is an important interplanetary structure with respect to geomagnetic storms is not new (e.g., Zhang and Burlaga, J. Geophys. Res. 93, 2511, 1988; Bothmer, ESA SP-535, 419, 2003).  相似文献   
186.
在分析德尔尼矿区试验剖面的基础上,论述了综合物探方法在调查外围隐伏矿体中的应用。激电扫面可快捷有效圈定异常范围,瞬变电磁法、可控源音频大地电磁法可快速判定异常体的位置、深度、倾向。多种方法相互佐证,结合地质资料排除干扰,可有效降低多解性,为下一步地质重点工程提供资料依据。实践表明,研究成果与钻孔资料、已知矿体基本吻合,在此基础上对德尔尼东、西两区提出了后期工作的重点目标靶区,表明在本区利用这些物探方法来寻找以低阻异常为特征的铜钴矿体是行之有效的。  相似文献   
187.
对河南省不同区域的煤系地层反射波发育特点进行分析研究、归类总结和正反演对比,建立了地震波-地质层位的对应关系,有利于解释人员从时间剖面上准确分辨出新生界、煤系地层和煤系基底反射波组,确定煤层反射波及煤层赋存状况,为类似地区的地震资料解释工作提供科学的指导。  相似文献   
188.
叠前弹性波阻抗反演对礁滩型储层的预测和流体识别较叠后声阻抗反演的可信度更高,可对含油气性进行半定量—定量描述。以四川FL地区礁滩型储层为重点,以叠前弹性波阻抗反演为技术路线,对该地区反演出的数据体进行交汇解释,预测出了该区礁滩型储层的平面分布特点,预测结果与该区仅有的两口钻井资料相吻合。实践表明,用交会法并结合对储层响应敏感的两个参数泊松比和剪切模量进行储层解释,可靠度较高。  相似文献   
189.
渤海海峡跨海通道区浅地层结构探测   总被引:2,自引:0,他引:2       下载免费PDF全文
在对2012年渤海海峡跨海通道区实测浅地层剖面资料进行地质解释的基础上,通过将浅地层剖面与钻孔地层岩性划分进行对比,标定了标准反射界面,通过对浅地层剖面各反射波组、内部反射结构的追踪、对比分析以及测线间的闭合检查,划分出5个主要反射界面和4个声学地层单元,揭示了各地层单元的分布特征。对拟建跨海通道路线选区典型探测剖面进行了系统的分析、讨论。  相似文献   
190.
The Pelotas Basin is the classical example of a volcanic passive margin displaying large wedges of seaward-dipping reflectors (SDR). The SDR fill entirely its rifts throughout the basin, characterizing the abundant syn-rift magmatism (133–113 Ma). The Paraná–Etendeka Large Igneous Province (LIP), adjacent to west, constituted the pre-rift magmatism (134–132 Ma). The interpretation of ultra-deep seismic lines showed a very different geology from the adjacent Santos, Campos and Espírito Santo Basins, which constitute examples of magma-poor passive margins. Besides displaying rifts totally filled by volcanic rocks, diverse continental crustal domains were defined in the Pelotas Basin, such as an outer domain, probably constituted by highly stretched and permeated continental igneous crust, and a highly reflective lower crust probably reflecting underplating.The analysis of rifting in this portion of the South Atlantic is based on seismic interpretation and on the distribution of regional linear magnetic anomalies. The lateral accretion of SDR to the east towards the future site of the breakup and the temporal relationship between their rift and sag geometries allows the reconstitution of the evolution of rifting in the basin. Breakup propagated from south to north in three stages (130–127.5; 127.5–125; 125–113 Ma) physically separated by oceanic fracture zones (FZ). The width of the stretched, thinned and heavily intruded continental crust also showed a three-stage increase in the same direction and at the same FZ. Consequently, the Continental-Oceanic Boundary (COB) shows three marked shifts, from west to east, from south to north, resulting into rift to margin segmentation. Rifting also propagated from west to east, in the direction of the final breakup, in each of the three segments defined. The importance of the Paraná–Etendeka LIP upon the overall history of rupturing and breakup of Western Gondwanaland seems to have been restricted in time and in space only to the Pelotas Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号