首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   63篇
  国内免费   232篇
地球物理   48篇
地质学   615篇
海洋学   4篇
天文学   1篇
综合类   20篇
自然地理   3篇
  2024年   1篇
  2023年   7篇
  2022年   12篇
  2021年   10篇
  2020年   17篇
  2019年   21篇
  2018年   13篇
  2017年   34篇
  2016年   22篇
  2015年   11篇
  2014年   35篇
  2013年   33篇
  2012年   29篇
  2011年   17篇
  2010年   20篇
  2009年   40篇
  2008年   28篇
  2007年   28篇
  2006年   28篇
  2005年   33篇
  2004年   25篇
  2003年   25篇
  2002年   20篇
  2001年   20篇
  2000年   19篇
  1999年   22篇
  1998年   24篇
  1997年   11篇
  1996年   17篇
  1995年   14篇
  1994年   13篇
  1993年   8篇
  1992年   10篇
  1991年   3篇
  1990年   6篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1978年   1篇
排序方式: 共有691条查询结果,搜索用时 15 毫秒
71.
Dacitic magma, a mixture of high-temperature (T) aphyric magma and low-T crystal-rich magma, was erupted during the 1991–1995 Mount Unzen eruptive cycle. Here, the crystallization processes of the low-T magma were examined on the basis of melt inclusion analysis and phase relationships. Variation in water content of the melt inclusions (5.1–7.2 wt% H2O) reflected the degassing history of the low-T magma ascending from deeper levels (250 MPa) to a shallow magma chamber (140 MPa). The ascent rate of the low-T magma decreased markedly towards the emplacement level as crystal content increased. Cooling of magma as well as degassing-induced undercooling drove crystallization. With the decreasing ascent rate, degassing-induced undercooling decreased in importance, and cooling became more instrumental in crystallization, causing local and rapid crystallization along the margin of the magma body. Some crystals contain scores of melt inclusions, whereas there are some crystals without any inclusions. This heterogeneous distribution suggests the variation in the crystallization rate within the magma body; it also suggests that cooling was dominant cause for melt entrapment. Numerical calculations of the cooling magma body suggest that cooling caused rapid crystal growth and enhanced melt entrapment once the magma became a crystal-rich mush with evolved interstitial melt. The rhyolitic composition of melt inclusions is consistent with this model.Editorial responsibility: H Shinohara  相似文献   
72.
The Filakopi Pumice Breccia (FPB) is a very well exposed, Pliocene volcaniclastic unit on Milos, Greece, and has a minimum bulk volume of 1 km3. It consists of three main units: (A) basal lithic breccia (4–8 m) mainly composed of angular to subangular, andesitic and dacitic clasts up to 2.6 m in diameter; (B) very thickly bedded, poorly sorted pumice breccia (16–17 m); and (C) very thick, reversely graded, grain-supported, coarse pumice breccia (6.5–20 m), at the top. The depositional setting is well constrained as shallow marine (up to a few hundred metres) by overlying fossiliferous and bioturbated mudstone. This large volume of fine pumice clasts is interpreted to be the product of an explosive eruption from a submarine vent because: (1) pumice clasts are the dominant component; (2) the coarse pumice clasts (>64 mm) have complete quenched margins; (3) very large (>1 m) pumice clasts are common; (4) overall, the formation shows good hydraulic sorting; and (5) a significant volume of ash was deposited together with the coarsest pyroclasts.The bed forms in units A and B suggest deposition from lithic-rich and pumiceous, respectively, submarine gravity currents. In unit C, the coarse (up to 6.5 m) pumice clasts are set in matrix that grades upwards from diffusely stratified, fine (1–2 cm) pumice clasts at the base to laminated shard rich mud at the top. The coarse pumice clasts in unit C were settled from suspension and the framework was progressively infilled by fine pumice clasts from waning traction currents and then by water-settled ash. The FPB displays important features of the products of submarine explosive eruptions that result from the ambient fluid being seawater, rather than volcanic gas or air. In particular, submarine pyroclastic deposits are characterised by the presence of very coarse juvenile pumice clasts, pumice clasts with complete quenched rims, and good hydraulic sorting.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: J. Donelly-Nolan  相似文献   
73.
The Roccamonfina volcano is characterised by two stages of volcanic activity that are separated by volcano-tectonic caldera collapses. Ultrapotassic leucite-bearing rocks are confined to the pre-caldera stage and display geochemical characteristics similar to those of other volcanoes in the Roman Province. After the major sector collapse of the volcano, occurred at ca. 400 ka, shoshonitic rocks erupted from cinder cones and domes both within the caldera and on the external flanks of the pre-caldera Roccamonfina volcano. On the basis of new trace element and Sr–Nd–Pb isotope data, we show that the Roccamonfina shoshonitic rocks are distinct from shoshonites of the Northern Roman Province, but are very similar to those of the Neapolitan volcanoes. The last phases of volcanic activity erupted sub-alkaline magmas as enclaves in trachytic domes, and as lavas within the Monte Santa Croce dome. Ultrapotassic rocks of the pre-caldera composite volcano are plagioclase-bearing leucitites characterised by high levels of incompatible trace elements with an orogenic signature having troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.70926 to 0.70999, 143Nd/144Nd ranges from 0.51213 to 0.51217, while the lead isotope rations vary between 18.788–18.851 for 206Pb/204Pb, 15.685–15.701 for 207Pb/204Pb, and 39.048–39.076 for 208Pb/204Pb. Shoshonites show a similar pattern of trace element depletions and enrichments to the earlier ultrapotassic leucite-bearing rocks but have a larger degree of differentiation and lower concentrations of incompatible trace elements. On the other hand, shoshonitic rocks have Sr, Nd, and Pb isotopes consistently different than pre-caldera ultrapotassic leucite-bearing rocks. 87Sr/86Sr ranges from 0.70665 to 0.70745, 143Nd/144Nd ranges from 0.51234 to 0.51238, 206Pb/204Pb ranges from 18.924 to 19.153, 207Pb/204Pb ranges from 15.661 to 15.694, and 208Pb/204Pb ranges from 39.084 to 39.212. High-K calc-alkaline samples have intermediate isotopic values between ultrapotassic plagioclase leucitites and shoshonites, but the lowest levels of incompatible trace element contents. It is argued that ultrapotassic magmas were generated in a modified lithospheric mantle after crustal-derived metasomatism. Interaction between the metasomatic agent and lithospheric upper mantle produced a low-melting point metasomatised veined network. The partial melting of the veins alone produced pre-caldera leucite-bearing ultrapotassic magmas. It was possibly triggered by either post-collisional isotherms relaxation or increasing T°C due increasing heat flow through slab tears. Shoshonitic magmas were generated by further melting, at higher temperature, of the same metasomatic assemblage with addition 10–20% of OIB-like astenospheric mantle material. We suggest that addition of astenospheric upper mantle material from foreland mantle, flowing through slab tearing after collision was achieved. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
74.
The Ordovician Sierras Pampeanas, located in a continental back-arc position at the Proto-Andean margin of southwest Gondwana, experienced substantial mantle heat transfer during the Ordovician Famatina orogeny, converting Neoproterozoic and Early Cambrian metasediments to migmatites and granites. The high-grade metamorphic basement underwent intense extensional shearing during the Early and Middle Ordovician. Contemporaneously, up to 7000 m marine sediments were deposited in extensional back-arc basins covering the pre-Ordovician basement. Extensional Ordovician tectonics were more effective in mid- and lower crustal migmatites than in higher levels of the crust. At a depth of about 13 km the separating boundary between low-strain solid upper and high-strain lower migmatitic crust evolved to an intra-crustal detachment. The detachment zone varies in thickness but does not exceed about 500 m. The formation of anatectic melt at the metamorphic peak, and the resulting drop in shear strength, initiated extensional tectonics which continued along localized ductile shear zones until the migmatitic crust cooled to amphibolite facies P–T conditions. P–T–d–t data in combination with field evidence suggest significant (ca. 52%) crustal thinning below the detachment corresponding to a thinning factor of 2.1. Ductile thinning of the upper crust is estimated to be less than that of the lower crust and might range between 25% and 44%, constituting total crustal thinning factors of 1.7–2.0. While the migmatites experienced retrograde decompression during the Ordovician, rocks along and above the detachment show isobaric cooling. This suggests that the magnitude of upper crustal extension controls the amount of space created for sediments deposited at the surface. Upper crustal extension and thinning is compensated by newly deposited sediments, maintaining constant pressure at detachment level. Thinning of the migmatitic lower crust is compensated by elevation of the crust–mantle boundary. The degree of mechanical coupling between migmatitic lower and solid upper crust across the detachment zone is the main factor controlling upper crustal extension, basin formation, and sediment thickness in the back-arc basin. The initiation of crustal extension in the back-arc, however, crucially depends on the presence of anatectic melt in the middle and lower crust. Consumption of melt and cooling of the lower crust correlate with decreasing deposition rates in the sedimentary basins and decreasing rates of crustal extension.  相似文献   
75.
The Ibituruna quartz-syenite was emplaced as a sill in the Ribeira-Araçuaí Neoproterozoic belt (Southeastern Brazil) during the last stages of the Gondwana supercontinent amalgamation. We have measured the Anisotropy of Magnetic Susceptibility (AMS) in samples from the Ibituruna sill to unravel its magnetic fabric that is regarded as a proxy for its magmatic fabric. A large magnetic anisotropy, dominantly due to magnetite, and a consistent magnetic fabric have been determined over the entire Ibituruna massif. The magmatic foliation and lineation are strikingly parallel to the solid-state mylonitic foliation and lineation measured in the country-rock. Altogether, these observations suggest that the Ibituruna sill was emplaced during the high temperature (~ 750 °C) regional deformation and was deformed before full solidification coherently with its country-rock. Unexpectedly, geochronological data suggest a rather different conclusion. LA-ICP-MS and SHRIMP ages of zircons from the Ibituruna quartz-syenite are in the range 530–535 Ma and LA-ICP-MS ages of zircons and monazites from synkinematic leucocratic veins in the country-rocks suggest a crystallization at ~ 570–580 Ma, i.e., an HT deformation > 35My older than the emplacement of the Ibituruna quartz-syenite. Conclusions from the structural and the geochronological studies are therefore conflicting. A possible explanation arises from 40Ar–39Ar thermochronology. We have dated amphiboles from the quartz-syenite, and amphiboles and biotites from the country-rock. Together with the ages of monazites and zircons in the country-rock, 40Ar–39Ar mineral ages suggest a very low cooling rate: < 3 °C/My between 570 and ~ 500 Ma and ~ 5 °C/My between 500 and 460 Ma. Assuming a protracted regional deformation consistent over tens of My, under such stable thermal conditions the fabric and microstructure of deformed rocks may remain almost unchanged even if they underwent and recorded strain pulses separated by long periods of time. This may be a characteristic of slow cooling “hot orogens” that rocks deformed at significantly different periods during the orogeny, but under roughly unchanged temperature conditions, may display almost indiscernible microstructure and fabric.  相似文献   
76.
图拉尔根、香山和天宇、白石泉岩浆铜镍硫化物矿床分别位于新疆东天山的觉罗塔格构造带和中天山地块,角闪石在这些矿床中均以贯通矿物产出。本研究通过这些矿床角闪石的主量和微量元素含量,讨论两个构造单元成矿岩浆的性质和演化过程。四个矿床的角闪石种属主要为韭闪石、镁绿钙闪石、浅闪石、钛闪石、钙镁闪石和镁闪石,结晶温度区间为940~1080℃,压力区间为250~450MPa,相当于11~15km的深度。图拉尔根和香山矿床的角闪石结晶温度和压力均相对较低(平均分别为1027℃、318MPa和1013℃、313MPa),可能与其所处的觉罗塔格构造带断裂发育,成矿母岩浆易于侵位到较浅处结晶有关。四个矿床角闪石结晶时岩浆的含水量均较高(4%左右),可能是俯冲交代作用导致的地幔源区本身水含量较高以及角闪石结晶较晚共同作用的结果。相较于觉罗塔格构造带的图拉尔根和香山矿床(0 ΔNNO 1. 7),角闪石氧逸度计指示中天山地块天宇和白石泉矿床的氧逸度变化范围大且偏低(分别是-0. 6 ΔNNO 1. 7和-0. 4 ΔNNO 1. 8)。中天山铜镍矿床的氧逸度特征及相对觉罗塔格构造带较低的微量元素Ce/Pb比值指示其岩浆侵位过程中受到的古老地块的混染作用较强。以上研究表明角闪石虽是玄武质岩浆中较晚结晶的矿物,但能为示踪铜镍矿床岩浆演化提供重要线索。  相似文献   
77.
杨彦龙 《新疆地质》2019,(3):408-413
石墨矿相对于围岩物性特征更加独特,主要呈低阻高极化特征。依据石墨的独特物性条件,奇台黄羊山岩浆岩型石墨矿与围岩明显的物性差异,对黄羊山一带石墨矿勘查布设了激发极化法物探测量方法,通过与地质、槽探、钻探等方法的相互验证、补充,取得了重大勘探成果,突破了亿吨级资源储量类别。激发极化法在黄羊山石墨矿勘查边界圈定及深部资源推断中得到了很好的应用。通过对奇台黄羊山石墨矿激电测量的应用与研究,在大面积、埋藏较深的石墨矿勘查中,运用时间域激电及等距对称四极测深装置测得的视极化率(ηs)、通过反演计算取得的视电阻率(ρs)等主要参数,结合石墨矿体的实际产状确定矿体空间位置,以此准确判定矿体分布范围,为下一步地质工作、资源储量预测和工程布设指明方向。  相似文献   
78.
The Tafresh granitoids are located at the central part of the Urumieh-Dokhtar Magmatic Arc(UDMA) in Iran. These rocks, mainly consisting of diorite and granodiorite, were emplaced during the Early Miocene. They are composed of varying proportions of plagioclase + K-feldspar + hornblende ± quartz ± biotite. Discrimination diagrams and chemical indices of amphibole phases reveal a calc-alkaline affinity and fall clearly in the crust-mantle mixed source field. The estimated pressure, derived from Al in amphibole barometry, is approximately 3 Kb. The granitoids are I-type, metaluminous and belong to the calc-alkaline series. They are all enriched in light rare earth elements and large ion lithophile elements, depleted in high field strength elements and display geochemical features typical of subduction-related calc-alkaline arc magmas. Most crystal size distribution(CSD) line patterns from the granitoids show a non-straight trend which points to the effect of physical processes during petrogenesis.The presence of numerous mafic enclaves, sieve texture and oscillatory zoning along with the CSD results show that magma mixing in the magma chamber had an important role in the petrogenesis of Tafresh granitoids. Moreover, the CSD analysis suggests that the plagioclase crystals were crystallized in a time span of less than 1000 years, which is indicative of shallow depth magma crystallization.  相似文献   
79.
葛良胜 《地质与资源》1994,3(2):114-122
按容矿空间和控矿因素,可将熊耳山地区内生金矿床划分为角砾岩型、构造破碎带蚀变岩型、石英脉型及由不同控矿因素复合控制的复合类型等。空间上不同类型之间具有密切的共生过渡关系。太华群原岩中的金在变质热液作用下被活化迁移至有利的构造部位,发生局部富集,形成"矿胚"或"矿胚"的发展,并为后期岩浆热液再次搬运,参与成矿。燕山中晚期钙碱性岩浆岩具较大的成矿能力,是本区金矿床的主要矿源。不同类型矿床稳定同位素及包裹体特征具相似的变化特点,分析表明,成矿流体主要源自岩浆,在成矿早期和晚期,不同地区可能有不同程度的变质水或大气水加入。作者认为,区内不同类型的金矿床是在统一的大地构造环境和成矿背景中形成的,有统一的矿质和介质来源,具相同或相似的成因,以发育角砾岩型金矿床为特点,以构造破碎带蚀变岩和角砾岩型为主要矿床类型,形成一个特定的矿床组合,即熊耳山地区内生金矿床系列。  相似文献   
80.
辽西兰家沟钼矿区成矿构造、岩浆演化及成矿作用   总被引:7,自引:0,他引:7  
田豫才 《矿产与地质》1999,13(3):135-140
根据兰家沟钼矿区控矿旋卷构造特征、燕山期花岗岩体的岩石化学特征、稀土元素特征和成矿元素含量,讨论了该矿区形成的地质构造条件和岩浆演化分异作用在钼矿床形成过程中的成矿作用和找矿前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号