首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   51篇
  国内免费   282篇
地球物理   51篇
地质学   777篇
海洋学   27篇
综合类   7篇
自然地理   9篇
  2024年   10篇
  2023年   19篇
  2022年   18篇
  2021年   24篇
  2020年   28篇
  2019年   32篇
  2018年   40篇
  2017年   33篇
  2016年   31篇
  2015年   27篇
  2014年   36篇
  2013年   44篇
  2012年   46篇
  2011年   38篇
  2010年   31篇
  2009年   45篇
  2008年   48篇
  2007年   40篇
  2006年   31篇
  2005年   42篇
  2004年   36篇
  2003年   25篇
  2002年   21篇
  2001年   14篇
  2000年   19篇
  1999年   20篇
  1998年   17篇
  1997年   19篇
  1996年   9篇
  1995年   5篇
  1994年   8篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1978年   1篇
排序方式: 共有871条查询结果,搜索用时 15 毫秒
211.
地球物理探矿方法在金矿勘查中的应用研究   总被引:5,自引:0,他引:5  
王志明 《矿产与地质》1996,10(2):131-135
根据各类型金矿成矿环境、控条件的研究成果,认为控制金矿矿的两个最基本条件是:构造岩浆作用和在构造岩浆作用背景上的金属硫化富集作用。  相似文献   
212.
对西南极菲尔德斯半岛早第三纪火山岩岩石学、地球化学特征及岩浆作用过程的具体分析表明,其岩浆演化过程是岩浆系统与周围环境(介质)进行能量和物质交换的热能耗散过程,具有动态平衡和阶段性的特点。岩浆结晶的多级复合结构和高位岩浆房中的分带构造,是岩浆作用非平衡过程的自组织现象。这种自组织现象也称作耗散结构  相似文献   
213.
Abstract K-Ar ages have been obtained for mineral separates: plagioclases from two dolerites and biotites from one granite and four granodiorites in the Oban-Obudu massif of southeastern Nigeria. Dolerites in the Oban area give K-Ar plagioclase ages of 204.0 ± 9.9 Ma and 219.9 ± 4.7 Ma. The granite of the Obudu area yields a K-Ar biotite age of 507.6 ± 10.1 Ma whilst the granodiorites in the Oban area yield K-Ar biotite ages ranging from 474.6 ± 9.4 Ma to 511.8 ± 10.0 Ma. The dolerites are related to the tholeiitic basaltic magmatism at the early opening of the central Atlantic, and are compatible in age with the formation of the Ring Complexes and the rifting of the Benue Trough of Nigeria. The granites and granodiorites belong to the syntectonic Older Granite series in the Pan-African orogeny. The emplacement timing deduced from the reported Pb-Pb zircon age of 617 ± 2 Ma and the newly obtained biotite ages suggest that these older granites in southeastern Nigeria had a prolonged cooling history of ∼110 Ma.  相似文献   
214.
Neogene potassic lavas in northern and southern Tibet have differentisotopic (  相似文献   
215.
Water released from subducting slabs through a dehydration reaction may lower the viscosity of the mantle significantly. Thus, we may expect a low viscosity wedge (LVW) above the subducting slabs. The LVW coupled with a large-scale flow induced by the subducting slabs may allow the existence of roll-like small-scale convection whose axis is normal to the strike of the plate boundary. Such a roll structure may explain the origin of along-arc variations of mantle temperature proposed recently in northeast Japan. We study this possibility using both 2D and 3D models with/without pressure- and temperature-dependent viscosity. 2D models without pressure and temperature dependence of viscosity show that, with a reasonable geometry of the LVW and subduction speed, small-scale convection is likely to occur when the viscosity of the LVW is less than 1019 Pa s. Corresponding 3D model studies reveal that the wavelength of rolls depends on the depth of the LVW. The inclusion of temperature-dependent viscosity requires the existence of further low viscosity in the LVW, since temperature dependence suppresses the instability of the cold thermal boundary layer. Pressure (i.e. depth) dependence coupled with temperature dependence of the viscosity promotes short wavelength instabilities. The model, which shows a relatively moderate viscosity decrease in the LVW (most of the LVW viscosity is 1018∼1019 Pa s) and a wavelength of roll ∼80 km, has a rather small activation energy and volume (∼130 kJ/mol and ∼4 cm3/mol) of the viscosity. This small activation energy and volume may be possible, if we regard them as an effective viscosity of non-linear rheology.  相似文献   
216.
Paleomagnetic data from lavas and dikes of the Unkar igneous suite (16 sites) and sedimentary rocks of the Nankoweap Formation (7 sites), Grand Canyon Supergroup (GCSG), Arizona, provide two primary paleomagnetic poles for Laurentia for the latest Middle Proterozoic (ca. 1090 Ma) at 32°N, 185°E (dp=6.8°, DM=9.3°) and early Late Proterozoic (ca. 850–900 Ma) at 10°S, 163°E (dp=3.5°, DM=7.0°). A new 40Ar/39Ar age determination from an Unkar dike gives an interpreted intrusion age of about 1090 Ma, similar to previously reported geochronologic data for the Cardenas Basalts and associated intrusions. The paleomagnetic data show no evidence of any younger, middle Late Proterozoic tectonothermal event such as has been revealed in previous geochronologic studies of the Unkar igneous suite. The pole position for the Unkar Group Cardenas Basalts and related intrusions is in good agreement with other ca. 1100 Ma paleomagnetic poles from the Keweenawan midcontinent rift deposits and other SW Laurentia diabase intrusions. The close agreement in age and position of the Unkar intrusion (UI) pole with poles derived from rift related rocks from elsewhere in Laurentia indicates that mafic magmatism was essentially synchronous and widespread throughout Laurentia at ca. 1100 Ma, suggesting a large-scale continental magmatic event. The pole position for the Nankoweap Formation, which plots south of the Unkar mafic rocks, is consistent with a younger age of deposition, at about 900 to 850 Ma, than had previously been proposed. Consequently, the inferred 200 Ma difference in age between the Cardenas Basalts and overlying Nankoweap Formation provides evidence for a third major unconformity within the Grand Canyon sequence.  相似文献   
217.
A review of the gold-copper, volcanogenic massive sulfide and ultramafic-hosted (i.e., chromitite, nickel sulfide, platinum-group minerals) deposits in the Philippines is presented. It is critical that a thorough understanding of the spatial and temporal relationship among magmatism, structures and mineralization must be gained if the correct evaluation of the economic potential of a particular deposit is to be done. Structural features conducive to precious and base metal mineralizations are associated with shear zones, extensional jogs and collision zones. In Northern Luzon, alkali and adakitic magmatism are considered good markers for gold-copper mineralization. Volcanogenic massive sulfide deposits are hosted by either ophiolites of marginal basin origin or metamorphic terranes. Exploration works on these deposits have been geared in determining the gold content of the massive sulfides. Chromitite deposits are related with ultramafic rock-hosted deposits. Their occurrence is attributed to crystallization, magma mixing and mantle-melt interaction processes in subduction-related settings. The multiple stages of partial melting responsible for the formation of supra-subduction zone ophiolites result in the generation of second to third stage melts that are enriched in nickel sulfides and platinum group minerals. On the basis of structural, geochemical and tectonic controls, Panay, Mindoro and Central Mindanao and the Sierra Madre, Leyte, and Samar are good exploration targets for precious and base metal deposition in the western and eastern sides of the Philippines, respectively.  相似文献   
218.
Abstract: Age of magmatism and tin mineralization in the Khingan‐Okhotsk volcano–plutonic belt, including the Khingan, Badzhal and Komsomolsk tin fields, were reviewed in terms of tectonic history of the continental margin of East Asia. This belt consists mainly of felsic volcanic rocks and granitoids of the reduced type, being free of remarkable geomagnetic anomaly, in contrast with the northern Sikhote‐Alin volcano–plutonic belt dominated by oxidized‐type rocks and gold mineralization. The northern end of the Khingan‐Okhotsk belt near the Sea of Okhotsk, accompanied by positive geomagnetic anomalies, may have been overprinted by magmatism of the Sikhote‐Alin belt. Tin–associated magmatism in the Khingan‐Okhotsk belt extending over 400 km occurred episodically in a short period (9510 Ma) in the middle Cretaceous time, which is coeval with the accretion of the Kiselevka‐Manoma complex, the youngest accretionary wedge in the eastern margin of the Khingan‐Okhotsk accretionary terranes. The episodic magmatism is in contrast with the Cretaceous‐Paleogene long–lasted magmatism in Sikhote–Alin, indicating the two belts are essentially different arcs, rather than juxtaposed arcs derived from a single arc. The tin‐associated magmatism may have been caused by the subduction of a young and hot back‐arc basin, which is inferred from oceanic plate stratigraphy of the coeval accre‐tionary complex and its heavy mineral assemblage of immature volcanic arc provenance. The subduction of the young basin may have resulted in dominance of the reduced‐type felsic magmas due to incorporation of carbonaceous sediments within the accretionary complex near the trench. Subsequently, the back‐arc basin may have been closed by the oblique collision of the accretionary terranes in Sikhote–Alin, which was subjected to the Late Cretaceous to Paleogene magmatism related to another younger subduction system. These processes could have proceeded under transpressional tectonic regime due to oblique subduction of the paleo‐Pacific plates under Eurasian continent.  相似文献   
219.
The synsedimentary tectonic activity evidenced in central and northern Tunisia points out the fact that the Campanian–Maastrichtian deposits are associated with several NW–SE and east–west normal faults. These results suggest that the east–west transform fault of North African Margin is still active during this stage. These data allow us to discuss a new geodynamic model for the North African Margin. To cite this article: M. Dlala, C. R. Geoscience 334 (2002) 135–140.  相似文献   
220.
The Messum igneous complex (MIC) lies within the ENE-trending zone of Lower Cretaceous (132 Ma) Damaraland intrusive complexes in Namibia, intruded into Pan-African Damara basement. It is defined by a roughly circular structure 18 km in diameter, the bounding ring fault exposed along the eastern sector. Encircling Messum are the volcanic sequences of the Goboboseb Mountains, comprising a lower basalt series (Tafelkop and Tafelberg types) followed, with intervening basalts, by four voluminous quartz latite (QL) eruptions (Goboboseb and Springbok QL units).Inferred stages of development are: (a) an initial very broad basaltic lava shield, comprising the Tafelberg and Tafelkop basalts, and Messum crater basalts (MCB; possibly ponded in near-vent lava lakes). Embedded within the lower basaltic sequence is a localised rhyolite-dominated eruptive centre (ca. 5 km in diameter), interpreted as a funnel caldera located towards the centre of the MIC. (b) Downsagging, extending northwards from Messum, following the Goboboseb QL eruptions (≥2300 km3). Ponding of overlying basaltic units. (c) Climactic Springbok QL eruption (≥6300 km3) producing further downsag together with the inward radial dip of all volcanic units towards the MIC. Ring fault initiation. (d) Cauldron subsidence emplacement of a granitoid suite, forming the MIC ‘moat’ (area between the ring fault and the core region). (e) Intrusion of gabbroic cone sheets into incompletely solidified granitic melts within the southeastern moat. Resulting hybridisation and magma mingling produced extensive development of heterogeneous granitoid and hybrid dioritic lithologies. (f) Cone sheet intrusions of the eastern gabbros into more highly solidified granitoids of the southeastern moat. (g) Intrusion of thick (1–2 km) western gabbro cone sheets, exhibiting local fine-scale layering, into solidified granitoids, mainly within the western moat. Minor late-stage granitic intrusions. (h) 2–3 Ma quiescent period followed by quartz- and ne-syenite intrusions, and finally basanite dykes, emplaced within the MIC core. Accompanying differential uplift of the core.Uplift/resurgence within the MIC has accompanied intrusion of the moat granitoids and mafic cone sheets, thereby juxtaposing volcanic and intrusive sequences. Phases of both subsidence and uplift have characterised the MIC. The NW Scotland Tertiary central igneous complexes and Messum show evidence of a number of parallel developments, but also important differences. The MIC differs markedly from caldera systems within the western USA and circum-Pacific. Messum is therefore suggested to represent a distinct class of intrusive/extrusive central complex, although probably common in large igneous provinces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号