The Paleogene succession of the Himalayan foreland basin is immensely important as it preserves evidence of India-Asia collision and related records of the Himalayan orogenesis. In this paper, the depositional regime of the Paleogene succession of the Himalayan foreland basin and variations in composition of the hinterland at different stages of the basin developments are presented. The Paleogene succession of the western Himalayan foreland basin developed in two stages, i.e. syn-collisional stage and post-collisional stage. At the onset, chert breccia containing fragments derived from the hanging walls of faults and reworked bauxite developed as a result of erosion of the forebulge. The overlying early Eocene succession possibly deposited in a coastal system, where carbonates represent barriers and shales represent lagoons. Up-section, the middle Eocene marl beds likely deposited on a tidal flat. The late Eocene/Oligocene basal Murree beds, containing tidal bundles, indicate that a mixed or semi-diurnal tidal system deposited the sediments and the sedimentation took place in a tide-dominated estuary. In the higher-up, the succession likely deposited in a river-dominated estuary or in meandering rivers. In the beginning of the basin evolution, the sediments were derived from the Precambrian basement or from the metasediments/volcanic rocks possessing terrains of the south. The early and middle Eocene (54.7–41.3 Ma) succession of the embryonic foreland possibly developed from the sediments derived from the Trans-Himalayan schists and phyllites and Indus ophiolite of the north during syn-collisional stage. The detrital minerals especially the lithic fragments and the heavy minerals suggest the provenance for the late Eocene/Oligocene sequences to be from the recycled orogenic belt of the Higher Himalaya, Tethyan Himalaya and the Indus-suture zone from the north during post-collisional stage. This is also supported by the paleocurrent measurements those suggest main flows directed towards southeast, south and east with minor variations. This implies that the river system stabilized later than 41 Ma and the Higher Himalaya attained sufficient height around this time. The chemical composition of the sandstones and mudstones occurring in the early foreland basin sequences are intermediate between the active and passive continental margins and/or same as the passive continental margins. The sedimentary succession of this basin has sustained a temperature of about 200 °C and undergone a burial depth of about 6 km. 相似文献
The Bandombaai Complex (southern Kaoko Belt, Namibia) consists of three main intrusive rock types including metaluminous hornblende- and sphene-bearing quartz diorites, allanite-bearing granodiorites and granites, and peraluminous garnet- and muscovite-bearing leucogranites. Intrusion of the quartz diorites is constrained by a U–Pb zircon age of 540±3 Ma.
Quartz diorites, granodiorites and granites display heterogeneous initial Nd- and O isotope compositions (Nd (540 Ma)=−6.3 to −19.8; δ18O=9.0–11.6‰) but rather low and uniform initial Sr isotope compositions (87Sr/86Srinitial=0.70794–0.70982). Two leucogranites and one aplite have higher initial 87Sr/86Sr ratios (0.70828–0.71559), but similar initial Nd (−11.9 to −15.8) and oxygen isotope values (10.5–12.9‰). The geochemical and isotopic characteristics of the Bandombaai Complex are distinct from other granitoids of the Kaoko Belt and the Central Zone of the Damara orogen. Our study suggests that the quartz diorites of the Bandombaai Complex are generated by melting of heterogeneous mafic lower crust. Based on a comparison with results from amphibolite-dehydration melting experiments, a lower crustal garnet- and amphibole-bearing metabasalt, probably enriched in K2O, is a likely source rock for the quartz diorites. The granodiorites/granites show low Rb/Sr (<0.6) ratios and are probably generated by partial melting of meta-igneous (intermediate) lower crustal sources by amphibole-dehydration melting. Most of the leucogranites display higher Rb/Sr ratios (>1) and are most likely generated by biotite-dehydration melting of heterogeneous felsic lower crust. All segments of the lower crust underwent partial melting during the Pan-African orogeny at a time (540 Ma) when the middle crust of the central Damara orogen also underwent high T, medium P regional metamorphism and melting. Geochemical and isotope data from the Bandombaai Complex suggest that the Pan-African orogeny in this part of the orogen was not a major crust-forming episode. Instead, even the most primitive rock types of the region, the quartz diorites, represent recycled lower crustal material. 相似文献
This paper presents a set of bulk geochemical and mineralogical data from a paleoweathering profile located in Zunyi District, Northern Guizhou, China. It was formed at the top of the Hanjiadian Formation of the Lower Silurian. A truncated, argillic, gleyed, kryptic paleospodosol is recognized in the paleoweathering profile. Ratios of immobile elements (Ti/Zr, Ti/Al) and their binary (e.g., Nb vs. Zr/TiO2 and Th/Sc vs. Zr/Sc), triangular diagrams (La-Th-Sc, Th-Sc-Zr/10, Zr-Cr-Ga) reflect that the Gaojiayan paleosol is the product of in-situ weathering of gray-green silty mudstone of the underlying Hanjiadian Formation. Mass balance calculations indicate K enrichment and Na enrichment in the upper and lower portions of paleosol, respectively. These findings both are the results of transgression, which brings substantial concentrations of such elements as K, Na, and Sr. In particular, K enrichment is achieved by the illitization of kaolinite. The biological processes of terrestrial vascular plants also enhance K concentration, especially at the top of the paleosol. Na enrichment is a consequence of albitization and/or adsorption by clay minerals through cation exchange. The mass distributions and relative mass changes of rare earth elements (REEs) in the studied profile display characteristics of vertical zonation. Three peaks in total REEs content are observed, indicating two paleoclimatic or paleoenvironmental changes. Mineralogical characteristics indicate that the paleoclimate changed first from warm and humid to cold and dry and later, to dry and lightly warmer. The corresponding soil environment varies from weakly acidic to strongly alkaline and later, to weakly acidic. Mass translocation characteristics of REEs and several transition metals suggest that the Gaojiayan paleosol may have undergone top erosion. 相似文献