首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6717篇
  免费   1956篇
  国内免费   564篇
测绘学   323篇
大气科学   268篇
地球物理   4256篇
地质学   2921篇
海洋学   480篇
天文学   380篇
综合类   86篇
自然地理   523篇
  2024年   12篇
  2023年   31篇
  2022年   50篇
  2021年   127篇
  2020年   160篇
  2019年   363篇
  2018年   527篇
  2017年   556篇
  2016年   596篇
  2015年   557篇
  2014年   584篇
  2013年   890篇
  2012年   552篇
  2011年   545篇
  2010年   433篇
  2009年   359篇
  2008年   418篇
  2007年   322篇
  2006年   331篇
  2005年   322篇
  2004年   257篇
  2003年   238篇
  2002年   226篇
  2001年   187篇
  2000年   198篇
  1999年   72篇
  1998年   44篇
  1997年   48篇
  1996年   38篇
  1995年   29篇
  1994年   31篇
  1993年   26篇
  1992年   14篇
  1991年   19篇
  1990年   16篇
  1989年   17篇
  1988年   11篇
  1987年   10篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1954年   2篇
排序方式: 共有9237条查询结果,搜索用时 15 毫秒
41.
This paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A computer code, named Python‐based DE, is developed and incorporated into the commercial finite element software ABAQUS, with a parallel computing technique to run an FE analysis for all trail vectors of one generation in DE in multiple cores of a cluster, which dramatically reduces the computational time. A synthetic case and a well‐instrumented real case, that is, the Taipei National Enterprise Center (TNEC) project, are used to demonstrate the capability of the proposed back‐analysis procedure. Results show that multiple soil parameters are well identified by back analysis using a DE optimization algorithm for highly nonlinear problems. For the synthetic excavation case, the back‐analyzed parameters are basically identical to the input parameters that are used to generate synthetic response of wall deflection. For the TNEC case with a total of nine parameters to be back analyzed, the relative errors of wall deflection for the last three stages are 2.2, 1.1, and 1.0%, respectively. Robustness of the back‐estimated parameters is further illustrated by a forward prediction. The wall deflection in the subsequent stages can be satisfactorily predicted using the back‐analyzed soil parameters at early stages. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
42.
In the present study the combined influence of seismic orientation and a number of parameters characterizing the structural system of Reinforced Concrete (R/C) buildings on the level of expected damages are examined. For the purposes of the above investigation eight medium‐rise buildings are designed on the basis of the current seismic codes. The structural characteristics examined are the ratio of the base shear received by the structural walls, the ratio of horizontal stiffness in two orthogonal directions and the structural eccentricity. Then, the buildings are analyzed by nonlinear time response analysis using 100 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes, forming 72 different angles with the structural axes. The structural damage is expressed in terms of the Park and Ang damage index. The results of the analyses revealed that the damage level of the buildings is strongly affected by the incident angle of the ground motion. The extent at which the orientation of the seismic records influences the damage response depends on the structural system and the distance of the record to the fault rupture. As a consequence, the common practice of applying the earthquake records along the structural axes can lead to significant underestimation of structural damage. Also, it was shown that the structural eccentricity can significantly differentiate the seismic damage level, as well as the impact of the earthquake orientation on the structural damage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
43.
This study examines the forcing mechanisms driving long‐term carbonate accumulation and preservation in lacustrine sediments in Lake Iznik (north‐western Turkey) since the last glacial. Currently, carbonates precipitate during summer from the alkaline water column, and the sediments preserve aragonite and calcite. Based on X‐ray diffraction data, carbonate accumulation has changed significantly and striking reversals in the abundance of the two carbonate polymorphs have occurred on a decadal time scale, during the last 31 ka cal bp . Different lines of evidence, such as grain size, organic matter and redox sensitive elements, indicate that reversals in carbonate polymorph abundance arise due to physical changes in the lacustrine setting, for example, water column depth and lake mixing. The aragonite concentrations are remarkably sensitive to climate, and exhibit millennial‐scale oscillations. Extending observations from modern lakes, the Iznik record shows that the aerobic decomposition of organic matter and sulphate reduction are also substantial factors in carbonate preservation over long time periods. Lower lake levels favour aragonite precipitation from supersaturated waters. Prolonged periods of stratification and, consequently, enhanced sulphate reduction favour aragonite preservation. In contrast, prolonged or repeated exposure of the sediment–water interface to oxygen results in in situ aerobic organic matter decomposition, eventually leading to carbonate dissolution. Notably, the Iznik sediment profile raises the hypothesis that different states of lacustrine mixing lead to selective preservation of different carbonate polymorphs. Thus, a change in the entire lake water chemistry is not strictly necessary to favour the preservation of one polymorph over another. Therefore, this investigation is a novel contribution to the carbon cycle in lacustrine systems.  相似文献   
44.
Ian Metcalfe 《Island Arc》2016,25(2):126-136
Limestones exposed north of Raub, Pahang, Malaysia, and sandwiched between the Bentong‐Raub Suture Zone and the westernmost margin of the Sukhothai Arc terrane, yield a late Dienerian (late Induan) conodont fauna. The co‐occurrence of Neospathodus dieneri Sweet (morphotypes 1, 2 and 3) and Neospathodus pakistanensis Sweet represents the Neospathodus dieneri morphotype 3 sub‐zone of the Neospathodus dieneri Zone. The sampled limestones are interpreted as the northwards extension of the Jerus Limestone which crops out near Cheroh and Jerus villages, significantly extending the known outcrop of the Jerus Limestone northwards. The Jerus Limestone is interpreted as hemipelagic and formed in a foredeep or forearc setting on top of the accretionary complex formed by eastwards subduction of the Palaeo‐Tethys during the Lower to Middle Triassic.  相似文献   
45.
We present a new survey for Hα emission objects in the Circinus cloud complex and introduce an efficient photometric method for detecting Hα emission via observations in a narrow‐band filter. The observed flux is compared to a blackbody fit of the continuum. Our search strategy reveals 20 stars with strong Hα emission (EW > 10 Å), eight of them being new detections. All Hα stars display infrared excess corroborating their youth. On the other hand, the region contains a number of infrared excess objects that do not show Hα emission. Our results support the picture that accretion – as witnessed by Hα emission – is a highly variable phenomenon. Therefore, Hα surveys can only trace the temporarily active objects. In contrast, infrared excess is a more robust tracer that reveals most of the population of young stellar objects in a star forming region. Our analysis of the general stellar content of the region yields a reliable distance of 450 pc for the Circinus cloud. Moreover, we find a ratio of total‐to‐selective extinction of RV = 2.8 suggesting that smaller‐than‐normal dust grains may be present. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
46.
Hydrologic model development and calibration have continued in most cases to focus only on accurately reproducing streamflows. However, complex models, for example, the so‐called physically based models, possess large degrees of freedom that, if not constrained properly, may lead to poor model performance when used for prediction. We argue that constraining a model to represent streamflow, which is an integrated resultant of many factors across the watershed, is necessary but by no means sufficient to develop a high‐fidelity model. To address this problem, we develop a framework to utilize the Gravity Recovery and Climate Experiment's (GRACE) total water storage anomaly data as a supplement to streamflows for model calibration, in a multiobjective setting. The VARS method (Variogram Analysis of Response Surfaces) for global sensitivity analysis is used to understand the model behaviour with respect to streamflow and GRACE data, and the BORG multiobjective optimization method is applied for model calibration. Two subbasins of the Saskatchewan River Basin in Western Canada are used as a case study. Results show that the developed framework is superior to the conventional approach of calibration only to streamflows, even when multiple streamflow‐based error functions are simultaneously minimized. It is shown that a range of (possibly false) system trajectories in state variable space can lead to similar (acceptable) model responses. This observation has significant implications for land‐surface and hydrologic model development and, if not addressed properly, may undermine the credibility of the model in prediction. The framework effectively constrains the model behaviour (by constraining posterior parameter space) and results in more credible representation of hydrology across the watershed.  相似文献   
47.
Structural, petrological and textural studies are combined with phase equilibria modelling of metapelites from different structural levels of the Roc de Frausa Massif in the Eastern Pyrenees. The pre‐Variscan lithological succession is divided into the Upper, Intermediate and Lower series by two orthogneiss sheets and intruded by Variscan igneous rocks. Structural analysis reveals two phases of Variscan deformation. D1 is marked by tight to isoclinal small‐scale folds and an associated flat‐lying foliation (S1) that affects the whole crustal section. D2 structures are characterized by tight upright folds facing to the NW with steep NE–SW axial planes. D2 heterogeneously reworks the D1 fabrics, leading to an almost complete transposition into a sub‐vertical foliation (S2) in the high‐grade metamorphic domain. All structures are affected by late open to tight, steeply inclined south‐verging NW–SE folds (F3) compatible with steep greenschist facies dextral shear zones of probable Alpine age. In the micaschists of the Upper series, andalusite and sillimanite grew during the formation of the S1 foliation indicating heating from 580 to 640 °C associated with an increase in pressure. Subsequent static growth of cordierite points to post‐D1 decompression. In the Intermediate series, a sillimanite–biotite–muscovite‐bearing assemblage that is parallel to the S1 fabric is statically overgrown by cordierite and K‐feldspar. This sequence points to ~1 kbar of post‐D1 decompression at 630–650 °C. The Intermediate series is intruded by a gabbro–diorite stock that has an aureole marked by widespread migmatization. In the aureole, the migmatitic S1 foliation is defined by the assemblage biotite–sillimanite–K‐feldspar–garnet. The microstructural relationships and garnet zoning are compatible with the D1 pressure peak at ~7.5 kbar and ~750 °C. Late‐ to post‐S2 cordierite growth implies that F2 folds and the associated S2 axial planar leucosomes developed during nearly isothermal decompression to <5 kbar. The Lower series migmatites form a composite S1–S2 fabric; the garnet‐bearing assemblage suggests peak P–T conditions of >5 kbar at suprasolidus conditions. Almost complete consumption of garnet and late cordierite growth points to post‐D2 equilibration at <4 kbar and <750 °C. The early metamorphic history associated with the S1 fabric is interpreted as a result of horizontal middle crustal flow associated with progressive heating and possible burial. The upright F2 folding and S2 foliation are associated with a pressure decrease coeval with the intrusion of mafic magma at mid‐crustal levels. The D2 tectono‐metamorphic evolution may be explained by a crustal‐scale doming associated with emplacement of mafic magmas into the core of the dome.  相似文献   
48.
Studying the diversity‐ecosystem function relationship in the deep sea is of primary importance in the face of biodiversity loss and for our understanding of how the deep sea functions. Results from the first study of diversity‐ecosystem function relationships in the deep sea (Danovaro et al. 2008; Current Biology, 18, 1–8) are unexpected and show an exponential relationship between deep‐sea nematode diversity and ecosystem function and efficiency, although this relationship appears largely restricted to relatively low diversities [ES(51) <25]. Here, we investigate the relationship between nematode diversity and several independent measures/proxies of ecosystem function (sediment community oxygen consumption, bacterial biomass, bacterial extracellular enzyme activity) and efficiency (ratio of bacterial/nematode carbon to organic C content of the sediment) on the New Zealand continental slope. Nematode diversity at our study sites was relatively high [ES(51) = 30–42], and there was no relationship between species/functional diversity and ecosystem function/efficiency after accounting for the effects of water depth and food availability. Our results are consistent with a breakdown of the exponential diversity‐function relationship at high levels of diversity, which may be due to increased competition or greater functional redundancy. Future studies need to take into account as many environmental factors and as wide a range of diversities as possible to provide further insights into the diversity‐ecosystem function relationship in the largest ecosystem on Earth.  相似文献   
49.
This article documents the analytical study and feasibility of placing a tuned mass damper in the form of a limber rooftop moment frame atop relatively stiff structures to reduce seismic acceleration response. Six existing structures were analytically studied using a suite of time history and response spectra records. The analyses indicate that adding mass in conjunction with a limber frame results in an increase in the fundamental period of each structure. The fundamental period increase generally results in a decrease in seismic acceleration response for the same time history and response spectra records. Owing to the limber nature of the rooftop frames, non‐linear analysis methods were required to evaluate the stability of the rooftop tuned mass damper frame. The results indicate the addition of a rooftop tuned mass damper frame reduces the seismic acceleration response for most cases although acceleration response can increase if the rooftop frame is not tuned to accommodate the specific structure's dynamic behaviour and localized soil conditions. Appropriate design of the rooftop tuned mass damper frame can result in decreased seismic acceleration response. This translates to safer structures if used as a retrofit measure or a more economical design if used for new construction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
50.
通过对缓倾角硬性结构面数据的分析、判别,现场实测结构面几何特征的各基本要素,如结构面坐标、结构面产状、结构面间距、结构面的连续性、结构面迹长等,运用三维空间投影图解,最终求解结构面连通率,取代以往现场用线连通率经验判断的传统模式。本方法已应用于水电工程施工过程,效果良好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号