首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   2篇
  国内免费   10篇
地球物理   5篇
地质学   14篇
海洋学   31篇
自然地理   4篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   1篇
  2015年   2篇
  2013年   8篇
  2012年   4篇
  2011年   2篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1989年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
31.
32.
A diverse assemblage of small mafic and ultramafic xenolithsoccurs in alkalic lava from Davidson and Pioneer seamounts locatedat the continental margin of central California. Based on mineralcompositions and textures, they form three groups: (1) mantlexenoliths of lherzolite, pyroxenite, and dunite with olivineof >Fo90; (2) ocean crust xenoliths of dunite with olivine<Fo90, troctolite, pyroxene-gabbro, and anorthosite withlow-K2O plagioclase; (3) cumulates of seamount magmas of alkalicgabbro with primary amphibole and biotite and anorthosites withhigh-K2O plagioclase. The alkalic cumulates are geneticallyrelated to, but more evolved than, their host lavas and probablycrystallized at the margins of magma reservoirs. Modeling andcomparison with experimentally derived phases suggest an originat moderate pressures (0·5–0·9 GPa). Thehigh volatile contents of the alkalic host lavas may have pressurizedthe magma chambers and helped to propel the xenolith-bearinglavas directly from deep storage at the base of the lithosphereto the eruption site on the ocean floor, entraining fragmentsof the upper mantle and ocean crust cumulates from the underlyingabandoned spreading center. KEY WORDS: basaltic magmatism; continental margin seamounts; geothermobarometry; mineral chemistry; xenoliths  相似文献   
33.
大洋海山及其生态环境特征研究进展   总被引:1,自引:0,他引:1  
海山作为深海大洋独特地貌,尽管其研究可追溯到100多年前,但对大洋海山的形成、地质特征、动力学特性、生态环境等方面了解甚少。随着人们认识海洋程度的提升,特别是回声探测、无人潜水器和卫星技术等技术的应用,对大洋海山的系统探索已取得了前所未有的进展,大洋海山研究已成为当代人们所渴求探索的领域之一。本文对大洋海山的研究历程、分类、生物群落特征、水文环境特征以及维持海山区高生物量的机制进行了总结。目前全球海山主要有两种分类方式,其分类一是基于构造特征,可将海山分为板块内海山、大洋中脊海山和岛弧海山;二是基于山顶到海表面的距离,可将海山分为浅海山、中等深度海山和深海山。海山为生物提供了独特的栖息地,形成了高生物量、高生物多样性和高生物独有性等三种主要的生物群落特征,使海山成为世界海洋渔业的重点海域和生态环境研究的热点区域之一。海山突出的地形对大洋环流造成阻隔,因而在海山周围形成了其独特的水文环境,其中海山环流和上升流是其两种典型代表,这些独特的水文环境特征对生物群落的组成和分布具有重要影响。海山区的高生物量主要通过上升流输送、地形诱捕和海流水平输送三种机制维持,三种机制对支撑海山生态系统的物质循环和能量流动至关重要。  相似文献   
34.
R. T. Cox 《Tectonophysics》1999,310(1-4):69-79
Bathymetry and the geoid anomaly of the northern flank of the Hawaiian swell is broader and higher than the southern flank, and it is characterized by higher heat flow than the axis or southern flank. It is here proposed that the northern flank of the Hawaiian swell has been augmented by heat conducted from the hotspot conduit into the upper mantle then transported northward of the volcanic axis by flow in the upper mantle (325°) that is more northerly than Pacific plate motion (292°). By assuming that the deep upper mantle is decoupled from the Pacific plate and is flowing at 325° to the northwest, changes in direction and rate of volcanic propagation and in geochemistry along individual volcanic segments of the Hawaiian volcanic chain can be interpreted in terms of tank experiment results showing that a volcanic hotspot conduit breaks into diapirs when tilted by mantle flow. Hawaiian volcanoes are aligned in en-echelon segments, and the Hawaiian Islands are the two most recent segments. For an individual segment, older northwestern volcanoes are aligned nearly parallel to the 292° plate motion direction, and they propagated to the southeast at approximately the same rate as the 92 km/m.y. speed of northwestward plate motion. In contrast, the alignment of the younger southeastern volcanoes is close to 325°, and they show a conspicuous acceleration in propagation of volcanism marked by out-of-sequence eruptions. Within the model proposed here, diapirs rise from instability nodes that develop along the tilted conduit of a mantle hotspot plume as it is sheared in the direction of deep upper-mantle flow and each diapir gives rise to a single volcanic center. As tilting progresses, diapirs form at lower levels along the conduit in more upstream positions of the mantle flow zone, rise sequentially into the decoupled lithosphere, erupt sequentially, and are translated in the direction of plate motion (older, northwestern Hawaiian Islands). Eventually, flow in the highly tilted conduit is impeded to the degree that the remaining upstream conduit breaks into a number of diapirs that rise together into the lithosphere. These late diapirs, translated as a group aligned in the direction of horizontal mantle flow, erupt over a relatively short time span and show out-of-sequence volcanism (younger, southeastern Hawaiian Islands). At this stage, a new cycle of rising and tilting will initiate the next en-echelon segment.  相似文献   
35.
Based on the survey data of five submarine seamount provinces (chains) in the Western Pacific, the distribution characteristics of cobalt-rich ferromanganese crust resources have been researched in this paper by using the relative reference data and applying the theories of hotspot and seafloor spreading. The main research results obtained are as follows: The Co-rich crust thickness in the study area is gradually increasing from east to west and from south to north having a negative correlation (r = -0.59) with longitude and a positive correlation (r = 0.48) with latitude. The crust thickness varying along longitude and latitude is influenced by the hotspot and seafloor spreading. The oceanic crusts and seamounts in the northwest part of the study area are older, and the crust resources are superior to those in the southeast part. In the depth of 〈1500 m, 1500-2000 m, 2000-2500 m in the study area, the cobalt crust thickness is respectively 5.45 cm, 4.34 cm and 3.55 cm, and in the depth of 2500-3000 m and 3000-3500 m, it drops respectively to 2.84 cm and 3.37 cm. The Co-rich crust resources are mainly concentrated in the seamount summit margins and the upper flanks in the depth of 〈2500 m. There is a strong negative correlation (r = -0.67) between the cobalt crust abundance and the slope of the seamount, 75 kg/m^2 and 50 kg/mz at the slopes of 0°-20° and 20°-34° respectively. Cobalt crusts are mainly distributed in the parts whose slopes are less than 20°. It is consistent with the fractal result that the slope threshold of cobalt crust distribution is 19°, and slopes over 20° are not conducive to the crust growth. The cobalt crusts of high grade are mainly enriched in the region within 150°E-140°W and 30°S-30°N in the Pacific, where there are about 587 seamounts at the depth of 3500- 6000 m and over 30 Ma of the oceanic crusts. The perspective area rich in cobalt crust resources is about 41×104 km^2 and the resource quantity is approximately 27 billion tons.  相似文献   
36.
东太结核主要为半埋藏和埋藏型,发育于以黏土和硅质组分为主的沉积环境.东太结核的锰相矿物主要有水羟锰矿和钡镁锰矿,具有较高的REY、Cu、Ni含量和Mn/Fe比值,显示遭受间隙水的影响,落入水成成因和成岩成因两个区间范围.西太结核主体暴露在海水中,周围沉积物主要由深海黏土组成.西太结核的锰相矿物几乎只有水羟锰矿,具有较高...  相似文献   
37.
利用全覆盖的多波束数据,聚集南海海盆洋壳区,统计分析了海山的地形特征,并展示了典型海山和海丘的地形。统计结果表明,研究区发育高差1 000 m以上的海山约46个,高差1 000~500 m的海丘约90个, 高差500~200 m的海丘约100个。多波束数据揭示了海山和海丘更加精细的形态特征,如部分海山和海丘顶部保留的火山口形态。同时,发现研究区众多海山和海丘一侧山坡为陡峭的断面,推测为一系列的小断裂切割形成。基于海山和海丘的地形断面分布特征探讨了中南断裂的位置,推测中南断裂可能是由两组南北向平行的断裂及中间区域组成的断裂带。  相似文献   
38.
陈洁  朱本铎  温宁  万荣胜 《地球物理学报》2012,55(09):3152-3162
南海的海岛、海山等地貌单元的地球物理研究对于南海成因、海岛利用、资源问题和我国海防建设均具有重要意义.过去我国的南海海洋实际测量资料覆盖面小,且多数为测线调查,海底地形测量精度和重磁等测量精度较低,因此,一直无法得到精度较高的研究成果.本文利用半个多世纪我国在南海历年的多波束、重力、磁力等船载海洋实际地球物理调查资料,加上少数卫星、航空测量成果,得到能够覆盖南海全部海域的多波束、重力、磁力实际测量的地球物理基础数据.追溯南海周边的地磁台站与当年调查时间匹配的日变数据,重新校正历年磁力测量成果,并利用"十一五"863国家海洋高科技计划的处理、拼合技术,获得了南海海底地形、重力、磁力三方互为印证的可靠地球物理成果,为海岛海山的地球物理研究奠定基础.研究发现,南海海岛海山按其地球物理性质并结合现有的岩石物性资料,可以分为三大类:1)南海大部分海岛海山为空间重力异常值高、正磁力ΔZ⊥异常值也高的高密度高磁性的双高海山,以基性喷出岩(玄武岩)为主;2)空间重力异常值高、磁力ΔZ⊥异常值低的海山,以花岗岩、变质岩为主;3)空间重力异常值高、部分磁力ΔZ⊥异常值高部分低的海山,可能是花岗岩、变质岩海山的部分区域出现火山喷发形成的. 海山的分布有规律,与南海的成因与南海块体的分异状态有关.  相似文献   
39.
The Philippine Basin,surrounded by a series of oceanic trenches,is an independent deep ocean basin in the West Pacific Ocean.Its middle part is divided into three marginal sea sub-basins by the Kyushu-Palau and West Mariana Ridges,namely,the West Philippine Basin,the Shikoku and Parece Vela Basins and the Mariana Trough.This paper,through the analysis of the geomorphologic features and gravity and magnetic characteristics of the basin and identification of striped magnetic anomalies,suggests that the entire Philippine Basin developed magnetic lineation of oceanic nature,and therefore,the entire basin is of the nature of oceanic crust.The basin has developed a series of special geomorphic units with different shapes.The KPR runs through the entire Philippine Basin.From the view of geomorphologic features,the KPR is a discontinuous seamount chain (chain-shaped seamounts) and subduction beneath the Japanese Island arc at the Nankai Trough which is the natural boundary between the basin and the Japanese Island arc.At the positions of 25 N,24 N,23 N and 18 N,obvious discontinuity is shown,which belongs to natural topographic discontinuity.Therefore,the KPR is topographically discontinuous.  相似文献   
40.
The Hawaiian–Emperor Seamount chain records the motion of the Pacific Plate relative to the Hawaiian mantle hotspot for 80 m.y. A notable feature of the chain is the pronounced bend at its middle. This bend had been widely credited to a change in plate motion, but recent research suggests a change in hotspot motion as an alternative. Existing paleomagnetic data from the Emperor Chain suggest that the hotspot moved south during the Late Cretaceous and Early Tertiary, but reached its current latitude by the age of the bend. Thus, data from area of the bend are important for understanding changes in plume latitude. In this study, we analyze the magnetic anomalies of five seamounts (Annei, Daikakuji-W, Daikakuji- E, Abbott, and Colahan) in the region of the bend. These particular seamounts were chosen because they have been recently surveyed to collect multibeam bathymetry and magnetic data positioned with GPS navigation. Inversions of the magnetic and bathymetric data were performed to determine the mean magnetization of each seamount and from these results, paleomagnetic poles and paleolatitudes were calculated. Three of the five seamounts have reversed magnetic polarities (two are normal) and four contain a small volume of magnetic polarity opposite to the main body, consistent with formation during the Early Cenozoic, a time of geomagnetic field reversals. Although magnetization inhomogene ties can degrade the accuracy of paleomagnetic poles calculated from such models, the seamounts give results consistent with one another and with other Pacific paleomagnetic data of approximately the same age. Seamount paleolatitudes range from 13.7 to 23.7, with an average of 19.4 ± 7.4 (2σ). These values are indistinguishable from the present-day paleolatitude of the Hawaiian hotspot. Together with other paleomagnetic and geologic evidence, these data imply that the Hawaiian hotspot has moved little in latitude during the past 45 m.y.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号