首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   485篇
  免费   34篇
  国内免费   45篇
测绘学   8篇
大气科学   35篇
地球物理   107篇
地质学   271篇
海洋学   2篇
天文学   3篇
综合类   21篇
自然地理   117篇
  2022年   6篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   3篇
  2016年   10篇
  2015年   3篇
  2014年   15篇
  2013年   63篇
  2012年   16篇
  2011年   18篇
  2010年   27篇
  2009年   35篇
  2008年   32篇
  2007年   52篇
  2006年   35篇
  2005年   18篇
  2004年   26篇
  2003年   26篇
  2002年   14篇
  2001年   18篇
  2000年   17篇
  1999年   10篇
  1998年   9篇
  1997年   12篇
  1996年   20篇
  1995年   8篇
  1994年   10篇
  1993年   4篇
  1992年   12篇
  1991年   8篇
  1990年   8篇
  1989年   1篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有564条查询结果,搜索用时 109 毫秒
531.
532.
According to historical records,in July of 1590 A.D.,a destructive earthquake occurred near Lintao county in Gansu Province,in which "… city walls and houses collapsed,and countless people and domestic animals were killed".In the same month,Binggou town in eastern Qinghai Province(now northeastern Ledu county),was also damaged by an earthquake.These two earthquakes were listed as two different cases in the published earthquake catalogues,recorded separately as the Lintao M_S5.5 earthquake with epicentral intensity Ⅶ in Gansu Province and the Ledu M_S5.0 earthquake with epicentral intensity Ⅵ in Qinghai Province.However,based on comprehensive analysis of research on historical records and field investigations,it is concluded in this paper that these two earthquakes could be the same one with magnitude 6.5 and epicentral intensity Ⅷ~Ⅸ.Its epicenter was in the Maxian Mt.,which is located in southeastern Yongjing and its seismogenic structure might be the mid-western segments of the north fringe fault zone of Maxian Mt.of Lanzhou.  相似文献   
533.
Soil CO2 concentration data were collected periodically from July 2001 to June 2005 from sampling site grids in two areas located on the lower flanks of Mt. Etna volcano (Paternò and Zafferana Etnea–Santa Venerina). Cluster analysis was performed on the acquired data in order to identify possible groups of sites where soil degassing could be fed by different sources. In both areas three clusters were recognised, whose average CO2 concentration values throughout the whole study period remained significantly different from one another. The clusters with the lowest CO2 concentrations showed time-averaged values ranging from 980 to 1,170 ppm vol, whereas those with intermediate CO2 concentrations showed time-averaged values ranging from 1,400 to 2,320 ppm vol, and those with the highest concentrations showed time-averaged values between 1,960 and 55,430 ppm vol. We attribute the lowest CO2 concentrations largely to a biogenic source of CO2. Conversely, the highest CO2 concentrations are attributed to a magmatic source, whereas the intermediate values are due to a variable mixing of the two sources described above. The spatial distribution of the CO2 values related to the magmatic source define a clear direction of anomalous degassing in the Zafferana Etnea–Santa Venerina area, which we attribute to the presence of a hidden fault, whereas in the Paternò area no such oriented anomalies were observed, probably because of the lower permeability of local soil. Time-series analysis shows that most of the variations observed in the soil CO2 data from both areas were related to changes in the volcanic activity of Mt. Etna. Seasonal influences were only observed in the time patterns of the clusters characterised by low CO2 concentrations, and no significant interdependence was found between soil CO2 concentrations and meteorological parameters. The largest observed temporal anomalies are interpreted as release of CO2 from magma batches that migrated from deeper to shallower portions of Etna’s feeder system. The pattern of occurrence of such episodes of anomalous gas release during the observation period was quite different between the two studied areas. This pattern highlighted an evident change in the mechanism of magma transport and storage within the volcano’s feeder system after June 2003, interpreted as magma accumulation into a shallow (<8 km depth) reservoir.  相似文献   
534.
Primary igneous anhydrite was first identified in 1982 El Chichón pumices. Analysis of the sulfur budget for the eruption provided compelling evidence that the pre-eruptive magma contained a significant gas phase at ∼ 7 km depth in order to account for the “excess gas release” of ∼ 5–9 million tons of SO2 to the stratosphere by the eruption. Primary igneous anhydrite and a larger “excess gas release” of ∼ 20 million tons of SO2 were noted for the significantly larger eruption of Mount Pinatubo in 1991, for which a separate gas phase at ∼ 7–9 km depth was also required by the sulfur budget. Pumices from both eruptions have mineral assemblages dominated by plagioclase and hornblende, with minor biotite, and show evidence for co-nucleation and mutual inclusions of anhydrite and apatite. Both magmas were also very water-rich and highly oxidized, with oxygen fugacities $1 log unit above the synthetic Ni–NiO buffer. Furthering the similarities between these two eruptions, ion-microprobe analyses of sulfur isotopic compositions of anhydrites in pumices from El Chichón and Mount Pinatubo both showed that individual crystals are isotopically homogeneous, but inter-crystalline variations in δ34S are well beyond analytical error.  相似文献   
535.
We report new Nd, Hf, Sr, and high-precision Pb isotopic data for 44 lava and tephra samples from Erebus volcano. The samples cover the entire compositional range from basanite to phonolite and trachyte, and represent all three phases of the volcanic evolution from 1.3 Ma to the present. Isotopic analyses of 7 samples from Mt. Morning and the Dry Valley Drilling Project (DVDP) are given for comparison. The Erebus volcano samples have radiogenic 206Pb/204Pb, unradiogenic 87Sr/86Sr, and intermediate 143Nd/144Nd and 176Hf/177Hf, and lie along a mixing trajectory between the two end-member mantle components DMM and HIMU. The Erebus time series data show a marked distinction between the early-phase basanites and phonotephrites, whose Nd, Hf, Sr, and Pb isotope compositions are variable (particularly Pb), and the current ‘phase-three’ evolved phonolitic lavas and bombs, whose Nd, Hf, Sr, and Pb isotope compositions are essentially invariant. Magma mixing is inferred to play a fundamental role in establishing the isotopic and compositional uniformity in the evolved phase-three phonolites. In-situ analyses of Pb isotopes in melt inclusions hosted in an anorthoclase crystal from a 1984 Erebus phonolite bomb and in an olivine from a DVDP basanite are uniform and identical to the host lavas within analytical uncertainties. We suggest that, in both cases, the magma was well mixed at the time melt inclusions were incorporated into the different mineral phases.  相似文献   
536.
The 26 October 2002–28 January 2003 eruption of Mt. Etna volcano was characterised by lava effusion and by an uncommon explosivity along a 1 km-long-eruptive fissure on the southern, upper flank of the volcano. The intense activity promoted rapid growth of cinder cones and several effusive vents. Analysis of thermal images, recorded throughout the eruption, allowed investigation of the distribution of vents along the eruptive fissure, and of the nature of explosive activity. The spatial and temporal distribution of active vents revealed phases of dike intrusion, expansion, geometric stabilization and drainage. These phases were characterised by different styles of explosive activity, with a gradual transition from fire fountaining through transitional phases to mild strombolian activity, and ending with non-explosive lava effusion. Here we interpret the mechanisms of the dike emplacement and the eruptive dynamics, according to changes in the eruptive style, vent morphology and apparent temperature variations at vents, detected through thermal imaging. This is the first time that dike emplacement and eruptive activity have been tracked using a handheld thermal camera and we believe that its use was crucial to gain a detailed understanding of the eruptive event.  相似文献   
537.
珠穆朗玛峰绒布冰川水文过程初步研究   总被引:9,自引:8,他引:1  
2005年4月8日至10月11日对珠峰地区绒布河水文过程进行了连续6个多月的观测.结果表明:该地区的水文过程与温度有较好的相关性,6~8月3个月流量约占观测期内总流量的80%.对比该地区1959年和2005年的水文观测数据,发现2005年同期总径流量比1959年有较大幅度增加,6~8月3个月月均流量2005年较1959年分别增加69%、35%、14%.分析冰芯恢复的降水量资料和珠峰附近长时间序列气象数据,降水自1950年以来保持下降趋势,而气温却呈缓慢升高.气温升高是径流量增大的关键因素.2005年观测期内控制流域径流深为622 mm,径流模数为38.52 L·s-1·km-2.  相似文献   
538.
对甘肃龙首山超基性岩带含矿岩体的主造岩矿物———橄榄石、辉石,进行了矿物化学特征分析 ;比较了金川岩体与外围岩体在矿物化学特征方面的异同。通过研究 ,龙首山超基性岩带的岩体中 ,五号异常岩体与金川岩体极为相似 ,有望在深部寻找到金川式铜镍硫化物矿床  相似文献   
539.
葛仙山位于江西省铅山县境内,是一处具有很高开发价值的道教旅游胜地。本文介绍了葛仙山的旅游资源,并对其进行了初步评价和规划,提出了合理开发葛仙山旅游资源的建议。  相似文献   
540.
根据1959年和2009年在喜马拉雅山珠穆朗玛峰北坡绒布冰川获得的冰川消融数据, 分析了该冰川消融速率变化特征.结果表明: 1) 在珠峰绒布冰川表碛覆盖区, 表碛厚度随海拔升高而降低. 2) 不同厚度表碛下的冰川消融速率差别较大; 当表碛厚度>8.5 cm时, 消融速率随表碛厚度的增加而减小; 促进冰川消融的表碛厚度阈值大于5 cm. 3) 从冰川消融速率的空间分布看, 绒布冰川大部分区域的消融速率<20 mm·d-1, 最大消融速率出现在海拔5 400~5 450 m处. 4) 绒布冰川消融速率受表碛厚度和气温综合影响, 低海拔处表碛太厚, 高海拔处气温较低, 冰川消融在上述两海拔处均受抑制, 冰川消融速率较小; 在中海拔处, 表碛相对较薄, 气温相对较高, 冰川消融速率最大; 冰川日均消融速率与日均正积温正相关. 5) 喜马拉雅山南坡冰川消融速率大于北坡冰川消融速率.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号