首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   3篇
地球物理   5篇
地质学   48篇
海洋学   1篇
综合类   1篇
自然地理   4篇
  2023年   1篇
  2020年   1篇
  2018年   1篇
  2017年   8篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   3篇
  1992年   1篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
41.
This paper summarises the evidence for glacial ice advance into lower Glen Spean during the Loch Lomond Stadial which involved the blockage of westward-flowing drainage to form a series of ice-dammed lakes, the former surfaces of which are marked by prominent shorelines. Detailed mapping of glacigenic landforms and instrumental levelling of the shorelines reveals a dynamic interplay between the glacier margins and lake formation. Subsequent deglaciation led to lowering of the lake levels, at times by catastrophic drainage beneath the ice (jökulhlaup). The abandoned shorelines have been warped and dislocated in numerous places as a result of glacio-isostatic deformation, faulting and landslip activity. The pattern of retreat of the ice can be deduced from the mapped distributions of retreat moraines and the levelled altitudes of numerous kame and fluvial terrace fragments. The sequence of events outlined in this paper provides important context for understanding the evolution of the landscape of the Glen Roy area during the Loch Lomond Stadial, and a prelude to more recent studies reported in other contributions to this thematic issue.  相似文献   
42.
Bedrock surfaces exposed around Llyn Llydaw, North Wales demonstrate contrasting styles of erosion beneath a Late Devensian ice sheet and a Loch Lomond Stadial (LLS) valley glacier. Ice sheet erosion involved lee-side fracturing, surface fracture wear and abrasive wear, while LLS erosion was primarily by abrasive wear. Preservation of ice sheet erosional features indicates limited rates of erosion during the LLS. Analysis of the geometry and distribution of erosional markings suggests that the low erosional capacity of the LLS glacier was due to a low basal sliding velocity. This prevented the formation of lee-side cavities, reduced the debris flux over the bed and minimised particle-bed contact loads. Reconstructions of the mass balance and geometry of the LLS glacier indicate that most of its balance velocity could be achieved by internal deformation alone. A combination of low subglacial water pressures and an unusually rough substrate explain the low sliding velocities. High bed roughness is due to the absence of leeside cavities and a change in flow orientation between ice sheet and LLS times, which meant that the LLS glacier was in contact with roughness elements which were generated in cavities beneath the ice sheet.  相似文献   
43.
A method for the extraction of carbonaceous particles from lake sediment   总被引:10,自引:0,他引:10  
The methods found in the literature for the extraction of carbonaceous particles from lake sediment are discussed. The technique used by Griffin & Goldberg (1975) on Lake Michigan sediments was improved by modifying the procedure to halve the extraction time and reduce the risk of fragmentation. This method was then applied to a sediment core taken from Loch Tinker in Western Scotland, which had previously been analysed using the Renberg & Wik method. Although the basic trends for both methods are the same, the new method is found to be more sensitive to low particle numbers and more accurate, due to a more efficient extraction and a higher magnification for microscope counting.  相似文献   
44.
The deglaciation of Skye at the close of the Loch Lomond Stadial is assessed on the basis of detailed geomorphological mapping and pollen-stratigraphic correlations. It is concluded that deglaciation proceeded in two distinct stages. The first was marked by numerous glacier stillstands and readvances, while uninterrupted retreat and local glacier stagnation occurred during the second and final stage. The pollen evidence indicates that the first stage was well advanced before the marked thermal improvement at the start of the Flandrian, and it is inferred that initial glacier retreat occurred in response to a decline in precipitation in the later part of the Loch Lomond Stadial. The first stage of glacier retreat continued into the early Flandrian, during which climatic amelioration was interrupted briefly. Final deglaciation appears to have occurred rapidly in response to sustained temperature increases. The collective evidence also indicates spatial variations in the timing of deglaciation, which appear to reflect differences in glacier morphology.  相似文献   
45.
Detailed geomorphological mapping has revealed evidence for the development of plateau icefields in the central fells of the English Lake District during the Loch Lomond (Younger Dryas) Stadial (ca. 12.9–11.5 ka). The largest plateau icefield system, which covered an area of approximately 55 km2 (including outlet glaciers), was centred on High Raise. To the west, smaller plateau icefields developed on Grey Knotts/Brandreth and Dale Head, covering areas of 7 km2 and 3 km2 respectively. The geomorphological impact of these plateau icefields appears to have been minimal on the summits, where the survival of blockfields and other frost‐weathered debris (mostly peat‐covered) implies the existence of at least patches of protective, cold‐based ice. Ice‐moulded bedrock at some plateau edges, however, documents a transition to wet‐based, erosive conditions. Prominent moraine systems were produced by outlet glaciers, which descended into the surrounding valleys where their margins became sediment traps for supraglacial debris and inwash. In some valleys, ice‐marginal moraines record successive positions of outlet glaciers, which actively backwasted towards their plateau source. This interpretation differs from that of previous workers, who assumed an alpine style of glaciation, with reconstructed glaciers emanating from corries and valley heads. It is likely that plateau icefields were more common at this time in upland Britain than hitherto has been appreciated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
46.
末次冰期Heinrich Stadial 4气候突变事件(HS4事件)是发生于约40 ka B.P.(B.P.表示Before Present, Present为公元1950年)最为显著的一次海因里希冰阶事件,对其转型特征和精细结构的刻画有助于深入理解千年尺度气候突变事件的机制。本研究基于贵州黔西县水西洞SXG-3石笋的11个高精度230Th年龄和277个δ18O数据,重建了40.77~37.17 ka B.P.时段平均分辨率为13 a的亚洲夏季风强度演变序列。该石笋氧同位素记录清晰地捕捉到了HS4弱季风事件,呈现出三阶段变化的特征,即:第1阶段(39.97~39.13 ka B.P.),石笋δ18O在840±90 a内偏正1.32‰,夏季风缓慢减弱,对应于热带辐合带(Intertropical Convergence Zone,简称ITCZ)的南移和格陵兰气候快速变冷;第2阶段(39.13~38.35 ka B.P.),石笋δ18O整体偏正,平均为-8.34‰,夏季风强度达到最弱,而南美季风达到最...  相似文献   
47.
Conventional methods for the determination of past soil erosion provide only average rates of erosion of the sediment's source areas and are unable to determine the rate of at-a-site soil loss. In this study, we report in-situ produced cosmogenic 10Be, and 14C measurements from erratic boulders and two depth-profiles from Younger Dryas moraines in Scotland, and assess the extent to which these data allow the quantification of the amount and timing of site-specific Holocene soil erosion at these sites. The study focuses on two sites located on end moraines of the Loch Lomond Readvance (LLR): Wester Cameron and Inchie Farm, both near Glasgow. The site near Wester Cameron does not show any visible signs of soil disturbance and was selected in order to test (i) whether a cosmogenic nuclide depth profile in a sediment body of Holocene age can be reconstructed, and (ii) whether in situ 10Be and 14C yield concordant results. Field evidence suggests that the site at Inchie Farm has undergone soil erosion and this site was selected to explore whether the technique can be applied to determine the broad timing of soil loss. The results of the cosmogenic 10Be and 14C analyses at Wester Cameron confirm that the cosmogenic nuclide depth-profile to be expected from a sediment body of Holocene age can be reconstructed. Moreover, the agreement between the total cosmogenic 10Be inventories in the erratics and the Wester Cameron soil/till samples indicate that there has been no erosion at the sample site since the deposition of the till/moraine. Further, the Wester Cameron depth profiles show minimal signs of homogenisation, as a result of bioturbation, and minimal cosmogenic nuclide inheritance from previous exposure periods. The results of the cosmogenic 10Be and 14C analyses at Inchie Farm show a clear departure from the zero-erosion cosmogenic nuclide depth profiles, suggesting that the soil/till at this site has undergone erosion since its stabilisation. The LLR moraine at the Inchie Farm site is characterised by the presence of a sharp break in slope, suggesting that the missing soil material was removed instantaneously by an erosion event rather than slowly by continuous erosion. The results of numerical simulations carried out to constrain the magnitude and timing of this erosion event suggest that the event was relatively recent and relatively shallow, resulting in the removal of circa 20–50 cm of soil at a maximum of ∼2000 years BP. Our analyses also show that the predicted magnitude and timing of the Inchie Farm erosion event are highly sensitive to the assumptions that are made about the background rate of continuous soil erosion at the site, the stabilisation age of the till, and the density of the sedimentary deposit. All three parameters can be independently determined a priori and so do not impede future applications to other localities. The results of the sensitivity analyses further show that the predicted erosion event magnitude and timing is very sensitive to the 14C production rate used and to assumptions about the contribution of muons to the total production rate of this nuclide. Thus, advances in this regard need to be made for the method presented in this study to be applicable with confidence to scenarios similar to the one presented here.  相似文献   
48.
In the north Irish Sea basin (ISB), sedimentary successions constrained by AMS 14C dates obtained from marine microfaunas record three major palaeoenvironmental shifts during the last deglacial cycle. (i) Marine muds (Cooley Point Interstadial) dated to between 16.7 and 14.7 14C kyr BP record a major deglaciation of the ISB following the Late Glacial Maximum (LGM). (ii) Terminal outwash and ice-contact landforms (Killard Point Stadial) were deposited during an extensive ice readvance, which occurred after 14.7 14C kyr BP and reached a maximum extent at ca.14 14C kyr BP. At this time the lowlands surrounding the north ISB were drumlinised. Coeval flowlines reconstructed from these bedforms end at prominent moraines (Killard Point, Bride, St Bees) and indicate contemporaneity of drumlinisation from separate ice dispersal centres, substrate erosion by fast ice flow, and subglacial sediment transfer to ice-sheet margins. In north central Ireland bed reorganisation associated with this fast ice-flow phase involved overprinting and drumlinisation of earlier transverse ridges (Rogen-type moraines) by headward erosion along ice streams that exited through tidewater ice margins. This is the first direct terrestrial evidence that the British Ice Sheet (BIS) participated in Heinrich event 1 (H1). (iii) Regional mud drapes, directly overlying drumlins, record high relative sea-level (RSL) with stagnation zone retreat after 13.7 14C kyr BP (Rough Island Interstadial). Elsewhere in lowland areas of northern Britain ice-marginal sediments and morainic belts record millennial-scale oscillations of the BIS, which post-date the LGM advance on to the continental shelf, and pre-date the Loch Lomond Stadial (Younger Dryas) advance in the highlands of western Scotland (ca. 11–10 14C kyr BP). In western, northwestern and northern Ireland, Killard Point Stadial (H1) ice limits are reconstructed from ice-flow lines that are coeval with those in the north ISB and end at prominent moraines. On the Scottish continental shelf possible H1-age ice limits are reconstructed from dated marine muds and associated ice marginal moraines. It is argued that the last major offshore ice expansion from the Scottish mountains post-dated ca. 15 14C kyr BP and is therefore part of the H1 event. In eastern England the stratigraphic significance of the Dimlington silts is re-evaluated because evidence shows that there was only one major ice oscillation post-dating ca.18 14C kyr BP in these lowlands. In a wider context the sequence of deglacial events in the ISB (widespread deglaciation of southern part of the BIS → major readvance during H1 → ice sheet collapse) is similar to records of ice sheet variability from the southern margins of the Laurentide Ice Sheet (LIS). Well-dated ice-marginal records, however, show that during the Killard Point readvance the BIS was at its maximum position when retreat of the LIS was well underway. This phasing relationship supports the idea that the BIS readvance was a response to North Atlantic cooling induced by collapse of the LIS. © 1998 John Wiley & Sons, Ltd.  相似文献   
49.
A thin sequence of in situ fossiliferous gravels and silts overlain by a glacigenic bed is described from a temporary exposure in a working silica sand quarry. The sequence directly overlies unweathered Mercia Mudstone. Locally the bedrock surface forms a shallow palaeovalley some 15 m deep and almost 1 km wide. The sequence in question lies close to the valley axis. The silts, pollen, plant macrofossils, Mollusca, Coleoptera, and Ostracoda assemblages each suggest a similar environment of sedimentation: a shallow pool within a treeless open landscape. Much of the bedrock within the working quarry appears to be draped by the Oakwood till and this unit is co-extensive with the glacigenic sediments over the silts and gravels. In parts at least, the till has been subject to redeposition and its upper surface has scattered ventifacts. Above this wind-deflation horizon lies the Chelford Sands Formation, in the middle of which is the Chelford Interstadial stratotype, the Farm Wood member. The biota preserved in the gravels and silts suggest a stadial prior to the Early Devensian Chelford Interstadial. This is the first unambiguous stratigraphic evidence from Cheshire of a glacial event antedating the Chelford Interstadial.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号