全文获取类型
收费全文 | 148篇 |
免费 | 92篇 |
国内免费 | 45篇 |
专业分类
测绘学 | 1篇 |
大气科学 | 1篇 |
地球物理 | 139篇 |
地质学 | 137篇 |
海洋学 | 4篇 |
天文学 | 1篇 |
综合类 | 2篇 |
出版年
2023年 | 5篇 |
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 5篇 |
2019年 | 6篇 |
2018年 | 6篇 |
2017年 | 9篇 |
2016年 | 4篇 |
2015年 | 7篇 |
2014年 | 12篇 |
2013年 | 10篇 |
2012年 | 11篇 |
2011年 | 9篇 |
2010年 | 2篇 |
2009年 | 12篇 |
2008年 | 10篇 |
2007年 | 19篇 |
2006年 | 19篇 |
2005年 | 11篇 |
2004年 | 24篇 |
2003年 | 11篇 |
2002年 | 11篇 |
2001年 | 5篇 |
2000年 | 6篇 |
1999年 | 10篇 |
1998年 | 5篇 |
1997年 | 6篇 |
1996年 | 7篇 |
1995年 | 8篇 |
1994年 | 7篇 |
1993年 | 5篇 |
1992年 | 5篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1988年 | 5篇 |
1987年 | 2篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1978年 | 2篇 |
排序方式: 共有285条查询结果,搜索用时 15 毫秒
71.
Effect of brittle fracture on the rheological structure of the lithosphere and its application in the Ordos 总被引:2,自引:0,他引:2
An empirical formula for the fracture strength of the principal rock type in the lithosphere is obtained based on the experimental data from previous studies, in which the effects of the confining pressure, size of the rock sample, temperature, strain rate and the pore pressure are taken into account, the empirical formulae for the effects of them are also presented. By comparing the frictional strength to the fracture strength calculated using the new empirical formula, it is shown that frictional sliding is dominant in the upper crust but brittle fracture is dominant in the lower part of the crust and the lithosphere beneath the crust. Therefore the fracture mechanism must be taken into account in the study of the rheological structure of the lithosphere. The empirical formula for the fracture strength is applied to study the rheological structure of the lithosphere in the Ordos block. Brittle regime in the rheological structure can be divided into two sub-regions, in one of which brittle fracture and in the other frictional sliding are dominant, respectively, unlike previous conventional studies in which frictional sliding is assumed to be the only factor; the magnitude of the rheological strength of the lithosphere calculated by the empirical formula is also lower than that obtained in previous conventional studies. 相似文献
72.
High-Mg lavas are characteristic of the mid-Miocene volcanism in Inner Asia.In the Vitim Plateau,small volume high-Mg volcanics erupted at 16-14 Ma.and were followed with voluminous moderate-Mg lavas at 14-13 Ma.In the former unit,we have recorded a sequence of(1) initial basaltic melts,contaminated by crustal material,(2) uncontaminated high-Mg basanites and basalts of transitional(K-Na-K) compositions,and(3) picrobasalts and basalts of K series;in the latter unit a sequence of(1) initial basalts and basaltic andesites of transitional(Na-K-Na) compositions and(2) basalts and trachybasalts of K-Na series.From pressure estimation,we infer that the high-Mg melts were derived from the sublithospheric mantle as deep as 150 km,unlike the moderate-Mg melts that were produced at the shallow mantle.The 14-13 Ma rock sequence shows that initial melts equilibrated in a garnet-free mantle source with subsequently reduced degree of melting garnet-bearing material.No melting of relatively depleted lithospheric material,evidenced by mantle xenoliths,was involved in melting,however.We suggest that the studied transition from high-to moderate-Mg magmatism was due to the mid-Miocene thermal impact on the lithosphere by hot sub-lithospheric mantle material from the Transbaikalian low-velocity(melting) domain that had a potential temperature as high as 1510℃.This thermal impact triggered rifting in the lithosphere of the Baikal Rift Zone. 相似文献
73.
The thermal structure and thickness of continental roots 总被引:19,自引:0,他引:19
We compare heat flow data from the Precambrian shields in North America and in South Africa. We also review data available in other less well-sampled Shield regions. Variations in crustal heat production account for most of the variability of the heat flow. Because of this variability, it is difficult to define a single average crustal model representative of a whole tectonic province. The average heat flow values of different Archean provinces in Canada, South Africa, Australia and India differ by significant amounts. This is also true for Proterozoic provinces. For example, the heat flow is significantly higher in the Proterozoic Namaqua–Natal Belt of South Africa than in the Grenville Province of the Canadian Shield (61 vs. 41 mW m−2 on average). These observations indicate that it is not possible to define single value of the average heat flow for all provinces of the same crustal age. Large amplitude short wavelength variations of the heat flow suggest that most of the difference between Proterozoic and Archean heat flow is of crustal origin. In eastern Canada, there is no good correlation between the local values of heat flow and heat production. In the Archean, Proterozoic and Paleozoic provinces of eastern Canada, heat flow values through rocks with the same heat production are not significantly different. There is therefore no evidence for variations of the mantle heat flow beneath these different provinces. After removing the local crustal heat production from the surface heat flow, the mantle (Moho) heat flow was estimated to be between 10–15 mW m−2 in the Archean, Proterozoic and Paleozoic provinces of eastern Canada. Estimates of the mantle heat flow in the Kaapvaal craton of South Africa may be slightly higher (≈17 mW m−2). Large-scale variations of bulk crustal heat production are well-documented in Canada and imply significant differences of deep lithospheric thermal structure. In thick lithosphere, surficial heat flow measurements record a time average of heat production in the lithospheric mantle and are not in equilibrium with the instantaneous heat production. The low mantle heat flow and current estimates of heat production in the lithospheric mantle do not support a mechanical (conductive) lithosphere thinner than 200 km and thicker than 330 km. Temperature anomalies with surrounding oceanic mantle extend to the convective boundary layer below the conductive layer, and hence to depths greater than these estimates. Mechanical and thermal stability of the lithosphere require the mantle part of the lithosphere to be chemically buoyant and depleted in radiogenic elements. Both characteristics are achieved simultaneously by partial melting and melt extraction. 相似文献
74.
A range of evidence from the Lachlan valley in the southeast Australian highlands is consistent with Neogene isostatic rebound in response to denudational unloading. This evidence is found along the inland edge of the highlands in the transition zone between the highlands proper and the Lachlan's inland alluviated valley and the intracratonic Murray Basin. The amounts and rates of uplift indicated by offsets of suballuvium bedrock profiles and the long profiles of Tertiary valley-filling basalts are consistent with modelling of denudational rebound using known rates of highland denudation and basinal sedimentation, and reasonable crustal properties. The modelling shows that weak to moderately strong strong lithosphere (effective elastic thickness, Te = 1-25 km) and strong lithosphere (Te = 100 km) are all consistent with the observed amounts of rebound. Strong lithosphere must be broken, however, to be consistent with the field data. Even in the Australian setting, which is characterized by very low rates of denudation, isostatic rebound in response to denudational unloading must be a significant factor in maintaining highland elevation and must be incorporated in models of long-term landscape evolution. It would be expected that denudational isostatic rebound would be an even more significant component of long-term landscape evolution in areas of higher denudation rates. 相似文献
75.
Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits 总被引:10,自引:0,他引:10
Frank P. Bierlein David I. Groves Richard J. Goldfarb Benoit Dubé 《Mineralium Deposita》2006,40(8):874-886
Ages of giant gold systems (>500 t gold) cluster within well-defined periods of lithospheric growth at continental margins, and it is the orogen-scale processes during these mainly Late Archaean, Palaeoproterozoic and Phanerozoic times that ultimately determine gold endowment of a province in an orogen. A critical factor for giant orogenic gold provinces appears to be thickness of the subcontinental lithospheric mantle (SCLM) beneath a province at the time of gold mineralisation, as giant gold deposits are much more likely to develop in orogens with subducted oceanic or thin continental lithosphere. A proxy for the latter is a short pre-mineralisation crustal history such that thick SCLM was not developed before gold deposition. In constrast, orogens with protracted pre-mineralisation crustal histories are more likely to be characterised by a thick SCLM that is difficult to delaminate, and hence, such provinces will normally be poorly endowed. The nature of the lithosphere also influences the intrinsic gold concentrations of potential source rocks, with back-arc basalts, transitional basalts and basanites enriched in gold relative to other rock sequences. Thus, segments of orogens with thin lithosphere may enjoy the conjunction of giant-scale fluid flux through gold-enriched sequences. Although the nature of the lithosphere plays the crucial role in dictating which orogenic gold provinces will contain one or more giant deposits, the precise siting of those giants depends on the critical conjunction of a number of province-scale factors. Such features control plumbing systems, traps and seals in tectonically and lithospherically suitable terranes within orogens. 相似文献
76.
《地学前缘(英文版)》2023,14(2):101500
Ultrahigh-temperature (UHT) metamorphism represents an extreme crustal thermal event with peak conditions exceeding 900 °C at 7–13 kbar. In the modern-style plate tectonic system, records of the UHT metamorphism are relatively rare due to the secular cooling of Earth. In the Palu region of Western Sulawesi, we newly discovered a series of HT-UHT metamorphic rocks including amphibolite, granulite, eclogites and gneiss. Of them, two granulite samples (18CS14-2, 18CS14-4) with high garnet content (>50 mol%) are chosen for petrographic observation, phase equilibrium modelling, and zircon U-Pb dating. These rocks are characterized by a relic M1 assemblage of Grt + Ky + Bt + Rt and a M2 assemblage of Grt + Sil + Pl + Spl + Crd ± Qtz + Ilm + melt. Phase equilibrium modelling based on effective bulk compositions yields UHT conditions of 7.2–8.5 kbar/940–1080 °C (18CS14-2) and 7.0–7.3 kbar/1000–1040 °C (18CS14-4). U-Pb analysis reveals two generations of metamorphic zircon with evolving REE content that is intimately related to garnet growth and decomposition. Zircon age of 36–5.3 Ma is ascribed to syn- to post-M1 metamorphism, whereas the young zircon age of 5.1–3.8 Ma is linked to syn- and post-M2 stage. The UHT metamorphism was probably the consequence of the upwelling of asthenospheric mantle triggered by post-collisional delamination of lithosphere in the Miocene-Pliocene (ca. 5 Ma). It could represent the youngest known UHT metamorphism on Earth. 相似文献
77.
A.M. Gabrielov V.I. Keilis-Borok V. Pinsky O.M. Podvigina A. Shapira V.A. Zheligovsky 《Tectonophysics》2007,429(3-4):229-251
We explore the impact of fluids migrating through a fault network on the dynamics of lithosphere, both on slow movements and seismicity. For that purpose fluids in the fault zones are incorporated into modelling of blocks-and-faults systems, which takes into account driving forces and the system's geometry. Simulations have been performed for two-dimensional models: an idealised “brick wall” structure, and a coarse image of Sinai Subplate. Migrating fluids originating in different locations are considered, as well as fluids trapped in closed pockets. Basic features of the modelled and observed seismicity are in good accord, as shown by comparison with the earthquake catalog compiled by Geophysical Institute of Israel. 相似文献
78.
由于活动的青藏高原不断的隆升和推挤作用,在西南向东北的推挤作用和周缘块体的阻挡以及东北缘内部块体挤压形变的作用下,形成了多个走向不同的青藏高原东北缘构造体系.新生代构造变形和地震活动强烈,区内分布多条大型深断裂带.海原断裂是青藏高原东北缘发育的弧形活动断裂带中规模最大、活动最为强烈的一条左旋走滑型断裂带,是重要的大地构造区边界,也是控制现今强震活动的活断层.本文利用2009年完成的高分辨率深地震反射剖面的北段资料,对其进行初步构造解释,揭示出海原断裂带的深部几何形态和其两侧地壳上地幔细结构.结果显示海原断裂并不是简单的陡立或者较缓,其几何形态随着深度变化.在海原断裂之下的Moho并未错断的反射特征显示海原断裂并不是直接错断莫霍面的超壳断裂.海原断裂带及两侧岩石圈结构和构造样式的研究为探讨青藏高原东北缘岩石圈变形机制提供地震学依据. 相似文献
79.
The abundances of the mildly incompatible elements Al, Cr, V, Sc and Yb in more than 1700 mantle peridotite bulk rock analyses are interpreted in the light of a fractional melting model based on experimentally measured partition coefficients (D) and melting reaction stoichiometries. All peridotites examined, irrespective of sample type (abyssal peridotites, orogenic massifs, ophiolites, on/off craton xenoliths), tectonic environment (divergent/convergent/passive margin, intraplate) or the pressure (P) they last equilibrated at in the mantle (plagioclase-, spinel- , or garnet facies), originated as residues at less than 3 GPa, mainly within the spinel-facies. Mantle rocks currently in the garnet facies likely were originally spinel-facies lithosphere underthrust or subducted to greater depths in convergent margins. This view is inescapable even within the widest range of D values employed in the calculations, and is furthermore strengthened when metasomatic effects on the abundances of the mildly incompatible elements in residues are considered. A pressure of origin of below 3 GPa for most mantle lithosphere creates difficulties for any model ascribing a significant volume of deep, cratonic mantle roots to plume sub-cretion or any other vertical tectonic mechanism. 相似文献
80.
Mesoproterozoic rift-zone magmatism in the Prakasam Alkaline Province of Eastern Ghats Belt, India is represented by three geochemically distinct primary mafic magmas and their plutonic differentiates. The three mafic magmas correspond to the alkali basaltic dykes, gabbroic dykes and lamprophyric dykes. The dyke activity is synchronous with the host plutons and belongs to the 1350–1250 Ma period Mesoproterozoic magmatism. Geochemical signatures suggest that the alkali basaltic dykes have a source in the thermal boundary layer, which has a history of prior melt extraction followed by enrichment. Both the gabbroic and lamprophyric dykes are derived from lithospheric sources and their geochemical variation can be explained by “vein-plus-wall-rock melting model”. Vein/wall-rock ratio is low for the sources of gabbroic dykes, whereas it is high for the lamprophyric dykes. Geochemistry of the gabbro dykes further indicates preservation of previous arc-signals by the lithosphere beneath the Prakasam Alkaline Province during the Mesoproterozoic. Geochemical signatures of lamproite, which could be a cratonic expression of the rift-triggered magmatism in the Prakasam Province, suggest a general increase in the metasomatic imprint with increasing lithosphere thickness from cratonic margin towards interior. It is found that geochemistry of continental rift-zone magmatism of the Prakasam rift is remarkably similar to that of the Gardar rift of South Greenland. It appears that the geodynamic conditions under which melting occurred in the Prakasam Alkaline Province are similar to that of a propagating rift with variable contributions from the convective mantle and subcontinental lithosphere mantle to the rift-zone magmas. The present study illustrates how fertility and chemical heterogeneity of the lithosphere play significant roles in the creation of enormous geochemical diversity characteristic of continental rift-zone magmatism. 相似文献