首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   92篇
  国内免费   44篇
测绘学   1篇
大气科学   1篇
地球物理   124篇
地质学   134篇
海洋学   4篇
天文学   1篇
综合类   2篇
  2023年   4篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   5篇
  2017年   9篇
  2016年   4篇
  2015年   7篇
  2014年   12篇
  2013年   10篇
  2012年   11篇
  2011年   9篇
  2010年   2篇
  2009年   12篇
  2008年   10篇
  2007年   19篇
  2006年   19篇
  2005年   11篇
  2004年   24篇
  2003年   11篇
  2002年   11篇
  2001年   4篇
  2000年   6篇
  1999年   8篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1978年   2篇
排序方式: 共有267条查询结果,搜索用时 15 毫秒
61.
The Cenozoic (mostly Neogene) volcanic activity in Syria is part of the extensive magmatism that took place in the Mashrek Region, Middle East, from upper Eocene to Holocene (40–0.0005 Ma). Samples in western Syria are mostly high TiO2 (TiO2 1.8–3.7 wt.%) alkaline mafic rocks (basanites, hawaiites and alkali basalts) plus rare transitional/tholeiitic basalts and basaltic andesites) with within-plate-like trace element signature.On the basis of incompatible trace element content, the volcanic activity in Syria has been divided into two stages: the first lasting from 25 to 5 Ma and the second from 5 to recent times. Indeed, the Syrian lavas show incompatible trace element content increasing with decreasing age from 25 to 5 Ma, followed by an abrupt decrease to low values roughly at the Miocene–Pliocene boundary. This temporal shift in composition is related to major tectonic re-organization occurred during upper Miocene.The proposed petrogenetic model invokes three steps: (a) passive upwelling of the shallow asthenosphere during the development of the Dead Sea transform fault system. Different degrees of partial melting were followed by variable extents of fractional crystallization and limited upper crustal contamination; (b) the Miocene–Pliocene boundary tectonic change enhanced passive decompression of the same sources and a consequent increase in degree of partial melting resulting in low incompatible trace element content of the relatively high-volume liquids; (c) after this phase, the incompatible trace element content in the basaltic magmas increased as consequence of fractional crystallization processes.Major and trace element content similarities with the rest of the circum-Mediterranean igneous rocks are consistent with a common relatively shallow origin for the Cenozoic anorogenic magmatism of the entire circum-Mediterranean area (the so-called Common Magmatic Reservoir). Because much of the igneous activity in the studied area is concentrated near the Dead Sea fault, the origin of Cenozoic magmatism in Syria (and in the rest of the circum-Mediterranean area) reflects a strong lithospheric control on the loci of partial melting. Mantle plumes from lower mantle and/or north-westward channelling of the Afar mantle plume is not needed to explain volcanic activity in Syria and the Mashrek area.  相似文献   
62.
The complicated structural and rheologic properties of Western Carpathian lithosphere reflect the complex geodynamic history of the Carpathian orogen. Based on critical analysis of earlier models, new interpolation of existing geophysical data and results of integrated modelling, a new map of the lithosphere thickness for the Carpathian–Pannonian region has been constructed. The map allows for the distinction of a frontal orogen collision zone in the NE (from increased lithosphere thickness) as well as a zone of oblique collision with the Bohemian Massif in the West, where lithosphere is not significantly thickened. The MOHO discontinuity beneath the Western Carpathian hinterland (Danube and East Slovak Basins), as defined by deep reflection seismic profiling, is relatively shallow. This probably reflects recent crustal extension related to oblique collision between the European plate and the ALCAPA block and an increase of the asthenospheric updoming from the Middle Miocene onward.Crustal thickness reflects the combined effects of deep-seated orogenic processes and mantle thermal evolution beneath the Pannonian Basin system. In this study, we focus particularly the structures of: (1) the Late Alpine collision and Neogene back arc basin development, including deep-seated contacts between colliding plates, a zone of slab detachment, the compressional accretionary wedge of the Outer Western Carpathian Flysch Belt, and extensional structures produced by subduction rollback and asthenosphere upwelling; (2) Early Alpine structures related to Cretaceous thrust-stacking, including subhorizontal reflection packages (interpreted as multi-generational extensional structures), the underplated intra-Penninic (Oravic) continental ribbon, and ophiolite traces of the Meliatic oceanic suture; and (3) north-dipping reflectors interpreted as remnant Hercynian lithotectonic fragments with opposed vergency to the subducted Alpine units.  相似文献   
63.
The gravity anomaly field of the Tyrrhenian basin and surrounding regions reflects the complex series of geodynamic events active in this area since the Oligocene–Miocene. They can resume in lithospheric thinning and asthenospheric rising beneath the Tyrrhenian Basin, coexisting with the roll-back subduction of the African plate margin westward sinking beneath the Calabrian Arc. The geographic closeness between these processes implies an intense perturbation of the mantle thermal regime and an interference at regional scale between the related gravity effects.A model of the litho-asthenospheric structure of this region is suggested, showing a reasonable agreement with both the evidences in terms of regional gravity anomaly pattern and the results concerning thermal state and petro-physical features of the mantle. The first phase of this study consisted of the computation of the isotherms in the crust–mantle system beneath the Tyrrhenian Basin and, afterwards, of the density distribution within the partially melted upwelling asthenosphere. The second phase consisted of a temperature/density modelling of the slab subducting beneath the Calabrian Arc. Finally, a 21 / 2 interpretation of gravity data was carried out by including as constraints the results previously obtained. Thus, the final result depicts a model matching both gravity, thermal and petrographic data. They provide (a) a better definition of the thermal regime of the passive mantle rise beneath the Tyrrhenian basin by means of the estimation of the moderate asthenospheric heating and (b) a model of lithospheric slab subducting with rates that could be smaller than generally suggested in previous works.  相似文献   
64.
Ages of giant gold systems (>500 t gold) cluster within well-defined periods of lithospheric growth at continental margins, and it is the orogen-scale processes during these mainly Late Archaean, Palaeoproterozoic and Phanerozoic times that ultimately determine gold endowment of a province in an orogen. A critical factor for giant orogenic gold provinces appears to be thickness of the subcontinental lithospheric mantle (SCLM) beneath a province at the time of gold mineralisation, as giant gold deposits are much more likely to develop in orogens with subducted oceanic or thin continental lithosphere. A proxy for the latter is a short pre-mineralisation crustal history such that thick SCLM was not developed before gold deposition. In constrast, orogens with protracted pre-mineralisation crustal histories are more likely to be characterised by a thick SCLM that is difficult to delaminate, and hence, such provinces will normally be poorly endowed. The nature of the lithosphere also influences the intrinsic gold concentrations of potential source rocks, with back-arc basalts, transitional basalts and basanites enriched in gold relative to other rock sequences. Thus, segments of orogens with thin lithosphere may enjoy the conjunction of giant-scale fluid flux through gold-enriched sequences. Although the nature of the lithosphere plays the crucial role in dictating which orogenic gold provinces will contain one or more giant deposits, the precise siting of those giants depends on the critical conjunction of a number of province-scale factors. Such features control plumbing systems, traps and seals in tectonically and lithospherically suitable terranes within orogens.  相似文献   
65.
新疆独有的地貌形态及展布特征反映了地壳岩石圈深部物质运移变化的结果。由于地理位置和所处的构造部位的不同,中部天山山脉、北部阿尔泰山脉、西南部昆仑—阿尔金山脉在地壳岩石圈深部特征都有很大差异,它们有整体共性的必然联系,也有区域个性的特殊面貌。了解和认识岩石圈结构及其变化特征,对于分析研究该区域构造环境、应力场和地震的发生等有重要意义。  相似文献   
66.
东秦岭岩石层的地电模型   总被引:12,自引:3,他引:9       下载免费PDF全文
根据大地电磁测深结果,东秦岭河南叶县-湖北南漳地区的岩石层由4个电性单元组成,其中华北地块南缘为相对高温的低阻区;秦岭北部为低温的高阻异常区;南秦岭为高温的低阻区,岩石层平均厚度仅80km,南秦岭的南部推覆到扬子地块之上达40-50km;扬子地块为相对低温的中等电阻率区,岩石层厚度150-200km.利用秦岭地区地壳上地幔岩石样品高温高压条件下电阻率的测定结果推断了各单元岩石层内电性层可能的岩石组成类型,并建立了剖面通过地区岩石层的地电模型.  相似文献   
67.
The trace element composition of silicate inclusions in diamonds: a review   总被引:1,自引:0,他引:1  
On a global scale, peridotitic garnet inclusions in diamonds from the subcratonic lithosphere indicate an evolution from strongly sinusoidal REEN, typical for harzburgitic garnets, to mildly sinusoidal or “normal” patterns (positive slope from LREEN to MREEN, fairly flat MREEN–HREEN), typical for lherzolitic garnets. Using the Cr-number of garnet as a proxy for the bulk rock major element composition it becomes apparent that strong LREE enrichment in garnet is restricted to highly depleted lithologies, whereas flat or positive LREE–MREE slopes are limited to less depleted rocks. For lherzolitic garnet inclusions, there is a positive relation between equilibration temperature, enrichment in MREE, HREE and other HFSE (Ti, Zr, Y), and decreasing depletion in major elements. For harzburgitic garnets, relations are not linear, but it appears that lherzolite style enrichment in MREE–HREE only occurs at temperatures above 1150–1200 °C, whereas strong enrichment in Sr is absent at these high temperatures. These observations suggest a transition from melt metasomatism (typical for the lherzolitic sources) characterized by fairly unfractionated trace and major element compositions to metasomatism by CHO fluids carrying primarily incompatible trace elements. Melt and fluid metasomatism are viewed as a compositional continuum, with residual CHO fluids resulting from primary silicate or carbonate melts in the course of fractional crystallization and equilibration with lithospheric host rocks.

Eclogitic garnet inclusions show “normal” REEN patterns, with LREE at about 1× and HREE at about 30× chondritic abundance. Clinopyroxenes approximately mirror the garnet patterns, being enriched in LREE and having chondritic HREE abundances. Positive and negative Eu anomalies are observed for both garnet and clinopyroxene inclusions. Such anomalies are strong evidence for crustal precursors for the eclogitic diamond sources. The trace element composition of an “average eclogitic diamond source” based on garnet and clinopyroxene inclusions is consistent with derivation from former oceanic crust that lost about 10% of a partial melt in the garnet stability field and that subsequently experienced only minor reenrichment in the most incompatible trace elements. Based on individual diamonds, this simplistic picture becomes more complex, with evidence for both strong enrichment and depletion in LREE.

Trace element data for sublithospheric inclusions in diamonds are less abundant. REE in majoritic garnets indicate source compositions that range from being similar to lithospheric eclogitic sources to strongly LREE enriched. Lower mantle sources, assessed based on CaSi–perovskite as the principal host for REE, are not primitive in composition but show moderate to strong LREE enrichment. The bulk rock LREEN–HREEN slope cannot be determined from CaSi–perovskites alone, as garnet may be present in these shallow lower mantle sources and then would act as an important host for HREE. Positive and negative Eu anomalies are widespread in CaSi–perovskites and negative anomalies have also been observed for a majoritic garnet and a coexisting clinopyroxene inclusion. This suggests that sublithospheric diamond sources may be linked to old oceanic slabs, possibly because only former crustal rocks can provide the redox gradients necessary for diamond precipitation in an otherwise reduced sublithospheric mantle.  相似文献   

68.
The intraplate Ancestral Rocky Mountains of western North America extend from British Columbia, Canada, to Chihuahua, Mexico, and formed during Early Carboniferous through Early Permian time in response to continent–continent collision of Laurentia with Gondwana—the conjoined masses of Africa and South America, including Yucatán and Florida. Uplifts and flanking basins also formed within the Laurentian Midcontinent. On the Gondwanan continent, well inboard from the marginal fold belts, a counterpart structural array developed during the same period. Intraplate deformation began when full collisional plate coupling had been achieved along the continental margin; the intervening ocean had been closed and subduction had ceased—that is, the distinction between upper versus lower plates became moot. Ancestral Rockies deformation was not accompanied by volcanism. Basement shear zones that formed during Mesoproterozoic rifting of Laurentia were reactivated and exerted significant control on the locations, orientations, and modes of displacement on late Paleozoic faults.Ancestral Rocky Mountain uplifts extend as far south as Chihuahua and west Texas (28° to 33°N, 102° to 109°W) and include the Florida-Moyotes, Placer de Guadalupe–Carrizalillo, Ojinaga–Tascotal and Hueco Mountain blocks, as well as the Diablo and Central Basin Platforms. All are cored with Laurentian Proterozoic crystalline basement rocks and host correlative Paleozoic stratigraphic successions. Pre-late Paleozoic deformational, thermal, and metamorphic histories are similar as well. Southern Ancestral Rocky Mountain structures terminate along a line that trends approximately N 40°E (present coordinates), a common orientation for Mesoproterozoic extensional structures throughout southern to central North America.Continuing Tien Shan intraplate deformation (Central Asia) has created an analogous array of uplifts and basins in response to the collision of India with Eurasia, beginning in late Miocene time when full coupling of the colliding plates had occurred. As in the Laurentia–Gondwana case, structures of similar magnitude and spacing to those in Eurasia have developed in the Indian plate. Within the present orogen two ancient suture zones have been reactivated—the early Paleozoic Terskey zone and the late Paleozoic Turkestan suture between the Siberian and East Gondwanan cratons. Inverted Proterozoic to early Paleozoic rift structures and passive-margin deposits are exposed north of the Terskey zone. In the Alay and Tarim complexes, Vendian to mid-Carboniferous passive-margin strata and the subjacent Proterozoic crystalline basement have been uplifted. Data on Tien Shan uplifts, basins, structural arrays, and deformation rates guide paleotectonic interpretations of ancient intraplate mountain belts. Similarly, exhumed deep crustal shear zones in the Ancestral Rockies offer insight into partitioning and reorientation of strain during contemporary intraplate deformation.  相似文献   
69.
The Archean lithospheric mantle beneath the Kaapvaal–Zimbabwe craton of Southern Africa shows ±1% variations in seismic P-wave velocity at depths within the diamond stability field (150–250 km) that correlate regionally with differences in the composition of diamonds and their syngenetic inclusions. Seismically slower mantle trends from the mantle below Swaziland to that below southeastern Botswana, roughly following the surface outcrop pattern of the Bushveld-Molopo Farms Complex. Seismically slower mantle also is evident under the southwestern side of the Zimbabwe craton below crust metamorphosed around 2 Ga. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa, and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the Proterozoic and show little correspondence with these lithospheric variations. However, silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane do show some regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity correlates with a greater proportion of eclogitic versus peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds whereas the converse is true for diamonds from higher velocity mantle. The oldest formation ages of diamonds indicate that the mantle keels which became continental nuclei were created by middle Archean (3.2–3.3 Ga) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of sulfide inclusions that are eclogitic in the 2.9 Ga age population links late Archean (2.9 Ga) subduction-accretion events involving an oceanic lithosphere component to craton stabilization. These events resulted in a widely distributed younger Archean generation of eclogitic diamonds in the lithospheric mantle. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite.  相似文献   
70.
A suite of 14 diamond-bearing and 3 diamond-free eclogite xenoliths from the Newlands kimberlite, South Africa, have been studied using the Re–Os isotopic system to provide constraints on the age and possible protoliths of eclogites and diamonds. Re concentrations in diamond-bearing eclogites are variable (0.03–1.34 ppb), while Os concentrations show a much more limited range (0.26–0.59 ppb). The three diamond-free eclogites have Re and Os concentrations that are at the extremes of the range of their diamond-bearing counterparts. 187Os/188Os ranges from 0.1579 to 1.4877, while 187Re/188Os varies from 0.54 to 26.2 in the diamond-bearing eclogites. The highly radiogenic Os in the diamond-bearing eclogites (γOs=23–1056) is consistent with their high 187Re/188Os and requires long-term isolation from the convecting mantle. Re–Os model ages for 9 out of 14 diamond-bearing samples lie between 3.08 and 4.54 Ga, in agreement with FTIR spectra of Newlands diamonds that show nitrogen aggregation states consistent with diamond formation in the Archean. Re–Os isochron systematics for the Newlands samples do not define a precise isochron relationship, but lines drawn between subsets of the data provide ages ranging from 2.9 to 4.1 Ga, all of which are suggestive of formation in the Archean. The Re–Os systematics combined with mineral chemistry and stable isotopic composition of the diamond-bearing eclogites are consistent with a protolith that has interacted with surficial environments. Therefore, the favored model for the origin of the Newlands diamond-bearing eclogites is via subduction. The most likely precursors for the Kaapvaal eclogites include komatiitic ocean ridge products or primitive portions of oceanic plateaus or ocean islands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号