首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   52篇
  国内免费   99篇
测绘学   18篇
地球物理   83篇
地质学   365篇
海洋学   2篇
综合类   36篇
自然地理   42篇
  2024年   3篇
  2023年   4篇
  2022年   9篇
  2021年   16篇
  2020年   19篇
  2019年   23篇
  2018年   18篇
  2017年   27篇
  2016年   19篇
  2015年   11篇
  2014年   19篇
  2013年   36篇
  2012年   16篇
  2011年   16篇
  2010年   13篇
  2009年   32篇
  2008年   33篇
  2007年   21篇
  2006年   31篇
  2005年   20篇
  2004年   19篇
  2003年   15篇
  2002年   15篇
  2001年   9篇
  2000年   38篇
  1999年   7篇
  1998年   6篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   10篇
  1993年   4篇
  1992年   1篇
  1991年   6篇
  1989年   5篇
  1980年   1篇
  1977年   1篇
排序方式: 共有546条查询结果,搜索用时 15 毫秒
11.
A structural transect in the Lower Dolpo highlights that the deformation and metamorphism of the Tibetan Zone (TZ) increase toward the bottom of the sequence. The contact with the underlying HHC is marked by a metamorphic jump from amphibolite facies in the carbonatic rocks of the upper part of the HHC to greenschist facies marbles in the TZ. Moreover, the HHC and the TZ show different metamorphic histories. The contact zone shows a strain increase accompanied by asymmetric folds with a top-to-the-northeast vergence, connected to a down-to-the-northeast tectonic transport. The contact is interpreted as an extensional shear zone, connected to the South Tibetan Detachment System. To cite this article: R. Carosi et al., C. R. Geoscience 334 (2002) 933–940.  相似文献   
12.
The paper records evidences of neotectonic activities in the Gangotri glacier valley that are found to be responsible for the present-day geomorphic set-up of the area since the last phase of major glaciation. Geomorphological features indicate the presence of a large glacier in the valley in the geological past. Prominent planar structures present in the rocks were later on modified into sets of normal faults in the present-day Himalayan tectonic set-up giving rise to graben structures. The block nearest the snout is traversed by the NW-SE trending Gaumukh fault. A number of terraces mark the entrenchment of Bhagirathi River in this part. The contrasting drainage morphometric parameters of two sides of the valley and asymmetric recessional patterns of the tributary glaciers further document movement along the fault. The distribution and orientation of debris fans also seem to be controlled by neotectonic activity. The neotectonic activity that followed the process of deglaciation has brought the glacially carved, wide U- shaped valley in contact with the present-day fluvially incised narrow and relatively deep valley. The wider segments have become sites of active deposition of glacially eroded debris. The low gradient and excessive filling has resulted in the river attaining a braided nature in these segments.  相似文献   
13.
Glacial Lake Outburst Floods in the Nepal Himalaya: A Manageable Hazard?   总被引:1,自引:0,他引:1  
Within the past fifteen years, glacial lake outburst floods have become an activetopic of discussion within the development community focused on Nepal. Suchfloods endanger thousands of people, hundreds of villages, and basic infrastructuresuch as trails and bridges. The flood risk is also a major impediment to hydroelectricdevelopment in several river basins. Unlike most other mountain hazards in Nepal,reducing the possibility of outburst floods is technically feasible. The first attemptwithin Nepal to reduce the hazard of one lake by artificially lowering its water levelwas partially completed in June 2000. Completing this task and beginning work onother hazardous lakes will require difficult decisions about risk by downstream residentsand substantial investment from the international aid community.  相似文献   
14.
A palaeomagnetic study has been carried out in the Tethyan Himalaya (TH; the northern margin of Greater India). Twenty-six palaeomagnetic sites have been sampled in Triassic low-grade metasediments of western Dolpo. Two remanent components have been identified. A pyrrhotite component, characterized by unblocking temperatures of 270–335 °C, yields an in situ mean direction of D=191.7°, I=−30.9° (k=29.5, α95=5.7°, N=23 sites). The component fails the fold test at the 99% confidence level (kin situ/kbed=6.9) and is therefore of postfolding origin. For reason of the low metamorphic grade, this pyrrhotite magnetization is believed to be of thermo-chemical origin. Geochronological data and inclination matching indicate an acquisition age around 35 Ma. The second remanence component has higher unblocking temperatures (>400 °C and up to 500–580 °C range) and resides in magnetite. A positive fold test and comparison with expected Triassic palaeomagnetic directions suggest a primary origin.The postfolding character of the pyrrhotite component, and its interpreted age of remanence acquisition, implies that the main Himalayan folding is older than 35 Ma in the western Dolpo area. This study also suggests that the second metamorphic event (Neo-Himalayan) was more significant in the Dolpo area than the first (Eo-Himalayan) one.A clockwise rotation of 10–15° is inferred from the pyrrhotite component, which is compatible with oroclinal bending and/or rotational underthrusting models. This rotation is also supported by the magnetite component, indicating that no rotation of the Tethyan Himalaya relative to India took place before 35 Ma.  相似文献   
15.
Rivers, chemical weathering and Earth's climate   总被引:4,自引:0,他引:4  
We detail the results of recent studies describing and quantifying the large-scale chemical weathering of the main types of continental silicate rocks: granites and basalts. These studies aim at establishing chemical weathering laws for these two lithologies, describing the dependence of chemical weathering on environmental parameters, such as climate and mechanical erosion. As shown within this contribution, such mathematical laws are of primary importance for numerical models calculating the evolution of the partial pressure of atmospheric CO2 and the Earth climate at geological timescales. The major results can be summarized as follow: (1) weathering of continental basaltic lithologies accounts for about 30% of the total consumption of atmospheric CO2 through weathering of continental silicate rocks. This is related to their high weatherability (about eight times greater than the granite weatherability); (2) a simple weathering law has been established for basaltic lithologies, giving the consumption of atmospheric CO2 as a function of regional continental runoff, and mean annual regional temperature; (3) no such simple weathering law can be proposed for granitic lithologies, since the effect of temperature can only be identified for regions displaying high continental runoff; (4) a general law relating mechanical erosion and chemical weathering has been validated on small and large catchments. The consequences of these major advances on the climatic evolution of the Earth are discussed. Particularly, the impacts of the onset of the Deccan trapps and the Himalayan orogeny on the global carbon cycle are reinvestigated. To cite this article: B. Dupré et al., C. R. Geoscience 335 (2003).  相似文献   
16.
西藏聂拉木高喜马拉雅结晶岩系在区域上以单一的叶理和单一的拉伸线理占主要地位,其变形带的组构主要反映了透入性的伸展变形;根据显微构造分析表明早期由北往南推覆,晚期由南向北伸展,且晚期表现非常明显。  相似文献   
17.
Numerous peraluminous and porphyritic granitic bodies and augen gneisses of granitic compositions occur in the nappe sequences of the Lower Himalaya. They are Proterozoic-to-lower Paleozoic in age and have been grouped into the ‘Lesser Himalaya granite belt’. The mode of emplacement and tectonic significance of these granites are as yet uncertain but they are generally considered to be sheet-like intrusions into the surrounding rocks. The small and isolated granite body (the Chur granite) that crops out around the Chur peak in the Himachal Himalaya is one of the more famous of these granites. Several lines of evidence have been adduced to show that the Chur granite has a thrust (the Chur thrust) contact with the underlying metasedimentary sequence (locally called the Jutogh Group). The Chur granite with restricted occurrence at the highest topographic and structural levels represents an erosional remnant of a much larger sub-horizontal thrust sheet. The contact relations between the country rocks and many of the other granite and granitic augen gneisses in the Lesser Himalaya belt are apparently similar to that of the Chur granite suggesting that at least some of them may also represent thrust sheets.  相似文献   
18.
The 1500-m-thick marine strata of the Tethys Himalaya of the Zhepure Mountain (Tingri, Tibet) comprise the Upper Albian to Eocene and represent the sedimentary development of the passive northern continental margin of the Indian plate. Investigations of foraminifera have led to a detailed biozonation which is compared with the west Tethyan record. Five stratigraphic units can be distinguished: The Gamba group (Upper Albian - Lower Santonian) represents the development from a basin and slope to an outer-shelf environment. In the following Zhepure Shanbei formation (Lower Santonian - Middle Maastrichtian), outer-shelf deposits continue. Pebbles in the top layers point to beginning redeposition on a continental slope. Intensified redeposition continues within the Zhepure Shanpo formation (Middle Maastrichtian - Lower Paleocene). The series is capped by sandstones of the Jidula formation (Danian) deposited from a seaward prograding delta plain. The overall succession of these units represents a sea-level high at the Cenomanian/Turonian boundary followed, from the Turonian to Danian, by an overall shallowing-upward megasequence. This is followed by a final transgression — regression cycle during the Paleocene and Eocene, documented in the Zhepure Shan formation (?Upper Danian - Lutetian) and by Upper Eocene continental deposits. The section represents the narrowing and closure of the Tethys as a result of the convergence between northward-drifting India and Eurasia. The plate collision started in the Lower Maastrichtian and caused rapid changes in sedimentation patterns affected by tectonic subsidence and uplift. Stronger subsidence and deposition took place from the Middle Maastrichtian to the Lower Paleocene. The final closure of remnant Tethys in the Tingri area took place in the Lutetian.  相似文献   
19.
在野外实地考察和追索的基础上,详细厘定了特提斯喜马拉雅带中段晚古生代以来火山岩的分布特点和迁移规律。结果表明,在特提斯喜马拉雅带中段晚古生代以来的地层系统中,从二叠纪→三叠纪→侏罗纪→白垩纪,共有11个层位含规模不等的火山岩,它们以透镜体、薄夹层或以块状玄武岩、玄武质安山岩等形式产出于不同地层系统中;从二叠纪→早中三叠世→晚三叠世→侏罗纪和白垩纪,具有由西向东、从南→北→南→北的迁移规律。这些火山活动的发现和厘定,对填补特提斯喜马拉雅带火山岩研究的空白,了解陆下岩石圈地幔和软流圈地幔之间的相互作用和新特提斯洋盆的形成演化都具有一定的指示意义。  相似文献   
20.
Abstract On the island of Mustique, fresh and propylitized olivine–plagioclase–clinopyroxene basalt, plagioclase–clinopyroxene–orthopyroxene and plagioclase–clinopyroxene–amphibole andesite lavas and minor intrusions are interbedded with Oligocene pyroclastic and epiclastic rocks. Chemical data show that two isotopically identical, but chemically different, suites of lava are present: (i) the OPXS (87Sr/86Sr 0.70403–0.70454; 143Nd/144Nd 0.512952–0.512986; δ18Ocpx 5.49 and 5.61), comprising basalts and orthopyroxene‐bearing andesites; and (ii) the AMPHS (87Sr/86Sr 0.70401–0.70457; 143Nd/144Nd 0.512981–0.513037; δ18Ocpx 5.54), made up of basalts and amphibole‐bearing andesites. The OPXS has higher contents of TiO2, P2O5, light rare earth elements, Sm, Pb, Th, U, Zr, Y and Nb, and higher La/Yb ratios than the AMPHS. The isotopic data suggest that both suites formed from melts derived from the same subduction‐modified depleted mantle source as the volcanic rocks of nearby St Vincent and Bequia, and the northern islands of the Lesser Antilles Arc. The immobile trace element contents, and La/Yb ratios, of the OPXS are indicative of ~10% partial melting of the source, whereas those of the AMPHS are indicative of ~25% partial melting. The within‐suite chemical variation of the OPXS is consistent with ~45% fractional crystallization of its intratelluric mineral assemblages, and that of the AMPHS is consistent with the removal of ~65% of its intratelluric assemblages. Experimental evidence suggests that both suites of basalt crystallized at pressures <8 kbar from melts containing 1–2 wt% water. After extensive fractional crystallization, the andesites crystallized at pressures between approximately 5 and 2 kbar. The OPXS magmas appear to have lost more of their water content than the AMPHS magmas. Thus, the OPXS andesites formed from melts with an estimated water content of 2–3 wt%, whereas the AMPHS andesites formed from melts containing at least 4.5 wt% water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号