首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   49篇
  国内免费   25篇
测绘学   1篇
大气科学   2篇
地球物理   82篇
地质学   150篇
海洋学   3篇
综合类   2篇
自然地理   7篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   8篇
  2016年   10篇
  2015年   11篇
  2014年   15篇
  2013年   15篇
  2012年   11篇
  2011年   9篇
  2010年   3篇
  2009年   18篇
  2008年   11篇
  2007年   13篇
  2006年   10篇
  2005年   16篇
  2004年   5篇
  2003年   6篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   7篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1985年   2篇
  1978年   1篇
排序方式: 共有247条查询结果,搜索用时 671 毫秒
221.
The Grader layered intrusion is part of the Havre-Saint-Pierre anorthosite in the Grenville Province (Quebec, Canada). This intrusion has a basin-like morphology and contains significant resources of Fe–Ti–P in ilmenite and apatite. Outcropping lithologies are massive oxide alternating with anorthosite layers, banded ilmenite–apatite–plagioclase rocks and layered oxide apatite (gabbro-)norites. Drill cores provide evidence for stratigraphic variations of mineral and whole rock compositions controlled by fractional crystallization with the successive appearance of liquidus phases: plagioclase and ilmenite followed by apatite, then orthopyroxene together with magnetite, and finally clinopyroxene. This atypical sequence of crystallization resulted in the formation of plagioclase–ilmenite–apatite cumulates or “nelsonites” in plagioclase-free layers. Fine-grained ferrodiorites that cross-cut the cumulates are shown to be in equilibrium with the noritic rocks. The high TiO2 and P2O5 contents of these assumed liquids explains the early saturation of ilmenite and apatite before Fe–Mg silicates, thus the nelsonites represent cumulates rather than crystallized Fe–Ti–P-rich immiscible melts. The location of the most evolved mineral and whole rock compositions several tens of meters below the top of the intrusion, forming a sandwich horizon, is consistent with crystallization both from the base and top of the intrusion. The concentrations of V and Cr in ilmenite display a single fractionation path for the different cumulus assemblages and define the cotectic proportion of ilmenite to 21 wt.%. This corresponds to bulk cotectic cumulates with ca. 8 wt.% TiO2, which is significantly lower than what is commonly observed in the explored portion of the Grader intrusion. The proposed mechanism of ilmenite-enrichment is the lateral removal of plagioclase due to its relative buoyancy in the dense ferrodiorite melt. This plagioclase has probably accumulated in other portions of the intrusion or has not been distinguished from the host anorthosite.  相似文献   
222.
A detailed field study reveals a gradual transition from high‐grade solid‐state banded orthogneiss via stromatic migmatite and schlieren migmatite to irregular, foliation‐parallel bodies of nebulitic migmatite within the eastern part of the Gföhl Unit (Moldanubian domain, Bohemian Massif). The orthogneiss to nebulitic migmatite sequence is characterized by progressive destruction of well‐equilibrated banded microstructure by crystallization of new interstitial phases (Kfs, Pl and Qtz) along feldspar boundaries and by resorption of relict feldspar and biotite. The grain size of all felsic phases decreases continuously, whereas the population density of new phases increases. The new phases preferentially nucleate along high‐energy like–like boundaries causing the development of a regular distribution of individual phases. This evolutionary trend is accompanied by a decrease in grain shape preferred orientation of all felsic phases. To explain these data, a new petrogenetic model is proposed for the origin of felsic migmatites by melt infiltration from an external source into banded orthogneiss during deformation. In this model, infiltrating melt passes pervasively along grain boundaries through the whole‐rock volume and changes completely its macro‐ and microscopic appearance. It is suggested that the individual migmatite types represent different degrees of equilibration between the host rock and migrating melt during exhumation. The melt topology mimicked by feldspar in banded orthogneiss forms elongate pockets oriented at a high angle to the compositional banding, indicating that the melt distribution was controlled by the deformation of the solid framework. The microstructure exhibits features compatible with a combination of dislocation creep and grain boundary sliding deformation mechanisms. The migmatite microstructures developed by granular flow accompanied by melt‐enhanced diffusion and/or melt flow. However, an AMS study and quartz microfabrics suggest that the amount of melt present did not exceed a critical threshold during the deformation to allow free movements of grains.  相似文献   
223.
分层坐标变换法起伏自由地表弹性波叠前逆时偏移   总被引:1,自引:1,他引:0       下载免费PDF全文
传统有限差分方法在处理起伏地表时存在一些困难,而坐标变换法可将起伏地表映射为水平地表以克服此缺点.但同时,地下构造被变换得更加复杂,导致了波传播和成像的不准确.本文提出了一种分层的坐标变换方法,并应用到了弹性波逆时偏移中,此方法既可以克服起伏地表的影响,又可以不破坏地下构造.波场正向延拓、逆时延拓和分离是在辅助坐标系下完成的,而成像是在笛卡尔坐标系下完成的.通过对简单起伏模型和中原起伏模型的试算证明了本文提出方法的准确性.同时,对两种极端起伏地层高程不准确的情况进行测试可以看出:分层坐标变换逆时偏移方法的成像效果远好于传统坐标变换方法.  相似文献   
224.
长春都市地域"点-轴"产业圈层化空间结构整合调控   总被引:2,自引:0,他引:2  
曹传新  张全  李诚固 《地理科学》2005,25(5):556-560
通过长春市都市地域形成发展的资源支撑系统的分析诊断,系统地论述了长春市都市地域第一产业、第二产业、第三产业“点一轴”圈层化空间结构,科学地提出了长春市都市地域“点一轴”圈层化空间结构整合调控的具体策略和方向。  相似文献   
225.
电离层Alfven谐振反馈不稳定性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
石润 《地球物理学报》2012,55(3):744-750
本文利用分层(磁层、电离层、大气层)模型,分析了电离层电导率以及磁场方向对电离层Alfven谐振(简称IAR)反馈不稳定性的影响.结果表明:倾斜磁场可以有效改变IAR的参数(谐振频率与增长率),进而改变IAR反馈不稳定性的性能,磁场方向向上时,在电离层电导率较大且不考虑Hall电导率的情况下,磁场倾斜角的减小有利于电离层不稳定性的形成,电离层Hall电导率可以增大IAR反馈不稳定性的增长率,且对于较大的倾角增长率提升较大.  相似文献   
226.
为认识地震波诱导的电磁场的特性,本文研究地震波在孔隙介质中由于动电效应引起的电磁场.基于Pride弹性-电磁耦合方程组推导了双力偶震源对应的位移-应力-电磁场间断向量的表达式,模拟了双力偶源激发的震电波场.作为比较,还模拟了爆炸点源激发的震电波场.结果表明:存在伴随纵波的电场,其各分量的波形与固相位移对应分量的波形相似,但相位相反;存在伴随横波的磁场,其波形与固相位移波形相似;双力偶震源还激发出了独立传播的辐射电磁场,其速度比纵波至少高一个数量级,几乎是“瞬间同时”到达了每个接收器,但是其强度比伴随电磁场小得多,且随着源距增大而迅速减小.本文研究还表明:伴随纵波的电场强度不仅与地震纵波幅度和动电耦合系数有关,还与由介质孔隙结构决定的流-固两相动力协调性有关,存在一种动力协调介质,纵波在这种介质中不引起电场.  相似文献   
227.
魏宝君  王甜甜  王颖 《地球物理学报》2009,52(11):2920-2928
采用递推矩阵方法计算各向异性介质的磁流源并矢Green函数,并利用上述并矢Green函数对层状各向异性倾斜地层中多分量感应测井的响应进行数值模拟,分析了线圈距、层厚、倾角和围岩对多分量感应测井响应的影响.计算发现,共面视电导率比共轴视电导率变化规律复杂,不能反映地层电导率的真实情况.各向异性地层共轴视电导率随井眼相对倾角的增加而减小,而共面视电导率随井眼相对倾角的增加而增加.仪器的垂向分辨率、围岩各向异性对目的层响应的影响程度取决于线圈距,围岩各向异性对高电导率目的层中测井响应的影响大于对高电阻率目的层中测井响应的影响.  相似文献   
228.
The vertical stratification of carbon dioxide (CO2) injected into a deep layered aquifer made up of high-permeability and low-permeability layers, such as Utsira aquifer at Sleipner site in Norway, is investigated with a Buckley–Leverett equation including gravity effects. In a first step, we study both by theory and simulation the application of this equation to the vertical migration of a light phase (CO2), in a denser phase (water), in 1D vertical columns filled with different types of porous media: homogeneous, piecewise homogeneous, layered periodic and finally heterogeneous. For each case, we solve the associated Riemann problems and propose semi-analytical solutions describing the spatial and temporal evolution of the light phase saturation. These solutions agree well with simulation results. We show that the flux continuity condition at interfaces between high-permeability and low-permeability layers leads to CO2 saturation discontinuities at these interfaces and, in particular, to a saturation increase beneath low-permeability layers. In a second step, we analyze the vertical migration of a CO2 plume injected into a 2D layered aquifer. We show that the CO2 vertical stratification under each low-permeability layer is induced, as in 1D columns, by the flux continuity condition at interfaces. As the injection takes place at the bottom of the aquifer the velocity and the flux function decrease with elevation and this phenomenon is proposed to explain the stratification under each mudstone layer as observed at Sleipner site.  相似文献   
229.
The Neoarchean (ca. 2.75 Ga) Luanga Complex, located in the Carajás Mineral Province in Brazil, is a medium-size layered intrusion consisting, from base to top, of ultramafic cumulates (Ultramafic Zone), interlayered ultramafic and mafic cumulates (Transition Zone) and mafic cumulates (Mafic Zone). Chromitite layers in the Luanga Complex occur in the upper portion of interlayered harzburgite and orthopyroxenite of the Transition Zone and associated with the lowermost norites of the Mafic Zone. The stratigraphic interval that hosts chromitites (∼150 meters thick) consists of several cyclic units interpreted as the result of successive influxes of primitive parental magma. The compositions of chromite in chromitites from the Transition Zone (Lower Group Chromitites) have distinctively higher Cr# (100Cr/(Cr + Al + Fe3+)) compared with chromite in chromitites from the Mafic Zone (Upper Group Chromitites). Chromitites hosted by noritic rocks are preceded by a thin layer of harzburgite located 15–20 cm below each chromitite layer. Lower Cr# in chromitites hosted by noritic rocks are interpreted as the result of increased Al2O3 activity caused by new magma influxes. Electron microprobe analyses on line transverses through 35 chromite crystals indicate that they are rimmed and/or extensively zoned. The composition of chromite in chromitites changes abruptly in the outer rim, becoming enriched in Fe3+ and Fe2+ at the expense of Mg, Cr, Al, thus moving toward the magnetite apex on the spinel prism. This outer rim, characterized by higher reflectance, is probably related to the metamorphic replacement of the primary mineralogy of the Luanga Complex. Zoned chromite crystals indicate an extensive exchange between divalent (Mg, Fe2+) cations and minor to none exchange between trivalent cations (Cr3+, Al3+ and Fe3+). This Mg-Fe zoning is interpreted as the result of subsolidus exchange of Fe2+ and Mg between chromite and coexisting silicates during slow cooling of the intrusion. A remarkable feature of chromitites from Luanga Complex is the occurrence of abundant silicate inclusions within chromite crystals. These inclusions show an adjacent inner rim with higher Cr# and lower Mg# (100 Mg/(Mg + Fe2+)) and Al# (100Al/(Cr + Al + Fe3+)). This compositional shift is possibly due to crystallization from a progressively more fractionated liquid trapped in the chromite crystal. Significant modification of primary cumulus composition of chromite, as indicated in our study for the Luanga Complex, is likely to be common in non-massive chromitites and the rule for disseminated chromites in mafic intrusions.  相似文献   
230.
One of the most puzzling features of the UG1 chromitite layers in the famous exposures at Dwars River, Eastern Bushveld Complex, is the bifurcation, i.e. convergence and divergence of layers along strike that isolate lenses of anorthosite. The bifurcations have been variously interpreted as resulting from: (1) the intermittent accumulation of plagioclase on the chamber floor as lenses, terminated by crystallization of continuous chromitite layers (the depositional model); (2) late-stage injections of chromite mush or chromite-saturated melt along anastomosing fractures that dismembered semi-consolidated plagioclase cumulates (the intrusive model); (3) post-depositional deformation of alternating plagioclase and chromite cumulates, resulting in local amalgamation of chromitite layers and anorthosite lenses that wedge out laterally (the deformational model). None of these hypotheses account satisfactorily for the following field observations: (a) wavy and scalloped contacts between anorthosite and chromitite layers; (b) abrupt lateral terminations of thin anorthosite layers within chromitite; (c) in situ anorthosite inclusions with highly irregular contacts and delicate wispy tails within chromitite; many of these inclusions are contiguous with footwall and hanging wall cumulates; (d) transported anorthosite fragments enclosed by chromitite; (e) disrupted anorthosite and chromitite layers overlain by planar chromitite; (f) protrusions of chromitite into underlying anorthosite; (g) merging of chromitite layers around anorthosite domes. We propose a novel hypothesis that envisages basal flows of new dense and superheated magma that resulted in intense thermo-chemical erosion of the temporary floor of the chamber. The melting and dissolution of anorthosite was patchy and commonly inhibited by chromitite layers, resulting in lens-like remnants of anorthosite resting on continuous layers of chromitite. On cooling, the magma crystallized chromite on the irregular chamber floor, draping the remnants of anorthosite and merging with pre-existing chromitite layers excavated by erosion. With further cooling, the magma crystallized chromite-bearing anorthosite. Emplacement of multiple pulses of magma led to repetition of this sequence of events, resulting in a complex package of anorthosite lenses and bifurcating chromitite layers. This hypothesis is the most satisfactory explanation for most of the features of this enigmatic igneous layering in the Bushveld Complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号