首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   591篇
  免费   45篇
  国内免费   19篇
测绘学   330篇
大气科学   17篇
地球物理   70篇
地质学   72篇
海洋学   28篇
天文学   1篇
综合类   38篇
自然地理   99篇
  2023年   5篇
  2022年   27篇
  2021年   30篇
  2020年   67篇
  2019年   49篇
  2018年   32篇
  2017年   53篇
  2016年   36篇
  2015年   54篇
  2014年   40篇
  2013年   66篇
  2012年   19篇
  2011年   30篇
  2010年   9篇
  2009年   11篇
  2008年   13篇
  2007年   16篇
  2006年   11篇
  2005年   18篇
  2004年   14篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1954年   1篇
排序方式: 共有655条查询结果,搜索用时 46 毫秒
201.
一种改进的融合多指标荒漠化等级分类方法   总被引:1,自引:0,他引:1  
土地荒漠化等级分类是荒漠化监测的重要内容,也是土地荒漠化综合治理、科学防护的基础。针对植被稀疏及干旱区土地荒漠化提取异常的问题,本文选择干旱/半干旱的科尔沁区为试验区,以2005、2010和2015年3期的中高分辨率Landsat遥感影像为数据源,基于大量的样本统计分析,提出了一种融合植被覆盖度(FVC)、去土壤植被指数(MSAVI)、增强性植被指数(EVI)3种指标的荒漠化提取模型,并将之与传统植被覆盖度指标提取结果进行了对比分析。研究结果表明,相较于单一植被指数反演方法,本文提出的算法分类精度更高,尤其针对干旱/半干旱地区,该融合植被指数法具有更好的适用性和稳健性。该方法为荒漠化评价体系的建立提供了新的思路,为土地荒漠化防护与治理提供了辅助决策支撑。  相似文献   
202.
Radiometric correction is a prerequisite for generating high-quality scientific data, making it possible to discriminate between product artefacts and real changes in Earth processes as well as accurately produce land cover maps and detect changes. This work contributes to the automatic generation of surface reflectance products for Landsat satellite series. Surface reflectances are generated by a new approach developed from a previous simplified radiometric (atmospheric + topographic) correction model. The proposed model keeps the core of the old model (incidence angles and cast-shadows through a digital elevation model [DEM], Earth–Sun distance, etc.) and adds new characteristics to enhance and automatize ground reflectance retrieval. The new model includes the following new features: (1) A fitting model based on reference values from pseudoinvariant areas that have been automatically extracted from existing reflectance products (Terra MODIS MOD09GA) that were selected also automatically by applying quality criteria that include a geostatistical pattern model. This guarantees the consistency of the internal and external series, making it unnecessary to provide extra atmospheric data for the acquisition date and time, dark objects or dense vegetation. (2) A spatial model for atmospheric optical depth that uses detailed DEM and MODTRAN simulations. (3) It is designed so that large time-series of images can be processed automatically to produce consistent Landsat surface reflectance time-series. (4) The approach can handle most images, acquired now or in the past, regardless of the processing system, with the exception of those with extremely high cloud coverage. The new methodology has been successfully applied to a series of near 300 images of the same area including MSS, TM and ETM+ imagery as well as to different formats and processing systems (LPGS and NLAPS from the USGS; CEOS from ESA) for different degrees of cloud coverage (up to 60%) and SLC-off. Reflectance products have been validated with some example applications: time series robustness (for a pixel in a pseudoinvariant area, deviations are only 1.04% on average along the series), spectral signatures generation (visually coherent with the MODIS ones, but more similar between dates), and classification (up to 4 percent points better than those obtained with the original manual method or the CDR products). In conclusion, this new approach, that could also be applied to other sensors with similar band configurations, offers a fully automatic and reasonably good procedure for the new era of long time-series of spatially detailed global remote sensing data.  相似文献   
203.
Estimation of forest aboveground biomass (AGB) is informative of the role of forest ecosystems in local and global carbon budgets. There is a need to retrospectively estimate biomass in order to establish a historical baseline and enable reporting of change. In this research, we used temporal spectral trajectories to inform on forest successional development status in support of modelling and mapping of historic AGB for Mediterranean pines in central Spain. AGB generated with ground plot data from the Spanish National Forest Inventory (NFI), representing two collection periods (1990 and 2000), are linked with static and dynamic spectral data as captured by Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors over a 25 year period (1984–2009). The importance of forest structural complexity on the relationship between AGB and spectral vegetation indices is revealed by the analysis of wavelet transforms. Two-dimensional (2D) wavelet transforms support the identification of spectral trajectory patterns of forest stands that in turn, are associated with traits of individual NFI plots, using a flexible algorithm sensitive to capturing time series similarity. Single-date spectral indices, temporal trajectories, and temporal derivatives associated with succession are used as input variables to non-parametric decision trees for modelling, estimation, and mapping of AGB and carbon sinks over the entire study area. Results indicate that patterns of change found in Normalized Difference Vegetation Index (NDVI) values are associated and relate well to classes of forest AGB. The Tasseled Cap Angle (TCA) index was found to be strongly related with forest density, although the related patterns of change had little relation with variability in historic AGB. By scaling biomass models through small (∼2.5 ha) spatial objects defined by spectral homogeneity, the AGB dynamics in the period 1990–2000 are mapped (70% accuracy when validated with plot values of change), revealing an increase of 18% in AGB irregularly distributed over 814 km2 of pines. The accumulation of C calculated in AGB was on average 0.65 t ha−1 y−1, equivalent to a fixation of 2.38 t ha−1 y−1 of carbon dioxide.  相似文献   
204.
为提高影像资源的共享度以及实现对已有的大量Landsat遥感影像的高效存储和管理,本文提出一种基于ArcGIS server的Landsat遥感影像在线检索解决方案。方案以ArcGIS Server作为网络地图发布平台,使用Arc-GIS Server提供的Java Web ADF(Application Developer Framework )结合J2EE技术完成遥感影像检索系统的开发。系统将按轨道行列号查询、按经纬度查询、按行政区查询、按空间位置查询、按成像时间查询和影像下载等功能集于一体。初步应用表明:ArcGIS Server与J2 EE技术的结合能够为用户提供良好的交互效果,并为相关部门提供了便捷的Landsat遥感影像存储管理与检索服务。  相似文献   
205.
Monitoring loss of humid tropical forests via remotely sensed imagery is critical for a number of environmental monitoring objectives, including carbon accounting, biodiversity, and climate modeling science applications. Landsat imagery, provided free of charge by the U.S. Geological Survey Center for Earth Resources Observation and Science (USGS/EROS), enables consistent and timely forest cover loss updates from regional to biome scales. The Indonesian islands of Sumatra and Kalimantan are a center of significant forest cover change within the humid tropics with implications for carbon dynamics, biodiversity maintenance and local livelihoods. Sumatra and Kalimantan feature poor observational coverage compared to other centers of humid tropical forest change, such as Mato Grosso, Brazil, due to the lack of ongoing acquisitions from nearby ground stations and the persistence of cloud cover obscuring the land surface. At the same time, forest change in Indonesia is transient and does not always result in deforestation, as cleared forests are rapidly replaced by timber plantations and oil palm estates. Epochal composites, where single best observations are selected over a given time interval and used to quantify change, are one option for monitoring forest change in cloudy regions. However, the frequency of forest cover change in Indonesia confounds the ability of image composite pairs to quantify all change. Transient change occurring between composite periods is often missed and the length of time required for creating a cloud-free composite often obscures change occurring within the composite period itself. In this paper, we analyzed all Landsat 7 imagery with <50% cloud cover and data and products from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify forest cover loss for Sumatra and Kalimantan from 2000 to 2005. We demonstrated that time-series approaches examining all good land observations are more accurate in mapping forest cover change in Indonesia than change maps based on image composites. Unlike other time-series analyses employing observations with a consistent periodicity, our study area was characterized by highly unequal observation counts and frequencies due to persistent cloud cover, scan line corrector off (SLC-off) gaps, and the absence of a complete archive. Our method accounts for this variation by generating a generic variable space. We evaluated our results against an independent probability sample-based estimate of gross forest cover loss and expert mapped gross forest cover loss at 64 sample sites. The mapped gross forest cover loss for Sumatra and Kalimantan was 2.86% of the land area, or 2.86 Mha from 2000 to 2005, with the highest concentration having occurred in Riau and Kalimantan Tengah provinces.  相似文献   
206.
The automated cloud cover assessment (ACCA) algorithm has provided automated estimates of cloud cover for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, cloud edges and transparent clouds such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the cloud masks. Object-based analysis was used to reduce the commission errors from the extended cloud filters. The method resulted in the removal of optically thin cirrus cloud and cloud edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove cloud and transparent cloud helping to reduce bias in subsequent land cover classifications.  相似文献   
207.
Most of fire severity studies use field measures of composite burn index (CBI) to represent forest fire severity and fit the relationships between CBI and Landsat imagery derived differenced normalized burn ratio (dNBR) to predict and map fire severity at unsampled locations. However, less attention has been paid on the multi-strata forest fire severity, which represents fire activities and ecological responses at different forest layers. In this study, using field measured fire severity across five forest strata of dominant tree, intermediate-sized tree, shrub, herb, substrate layers, and the aggregated measure of CBI as response variables, we fit statistical models with predictors of Landsat TM bands, Landsat derived NBR or dNBR, image differencing, and image ratioing data. We model multi-strata forest fire in the historical recorded largest wildfire in California, the Big Sur Basin Complex fire. We explore the potential contributions of the post-fire Landsat bands, image differencing, image ratioing to fire severity modeling and compare with the widely used NBR and dNBR. Models using combinations of post-fire Landsat bands perform much better than NBR, dNBR, image differencing, and image ratioing. We predict and map multi-strata forest fire severity across the whole Big Sur fire areas, and find that the overall measure CBI is not optimal to represent multi-strata forest fire severity.  相似文献   
208.
Several previous studies have shown that the inclusion of the LST (Land Surface Temperature) parameter to a NDVI (Normalized Difference Vegetation Index) based classification procedure is beneficial to classification accuracy. In this work, the Yearly Land Cover Dynamics (YLCD) approach, which is based on annual behavior of LST and NDVI, has been used to classify an agricultural area into crop types. To this end, a time series of Landsat-5 images for year 2009 of the Barrax (Spain) area has been processed: georeferenciation, destriping and atmospheric correction have been carried out to estimate NDVI and LST time series for year 2009, from which YLCD parameters were estimated. Then, a maximum likelihood classification was carried out on these parameters based on a training dataset obtained from a crop census. This classification has an accuracy of 87% (kappa = 0.85) when crops are subdivided in irrigated and non-irrigated fields, and when cereal crops are aggregated in a single crop, and performs better than a similar classification from Landsat bands only. These results show that a good crop differentiation can be obtained although detailed crop separation may be difficult between similar crops (barley, wheat and oat) due to similar annual NDVI and LST behavior. Therefore, the YLCD approach is suited for vegetation classification at local scale. As regards the assessment of the YLCD approach for classification at regional and global scale, it will be carried out in a further study.  相似文献   
209.
A classification model was demonstrated that explored spectral and spatial contextual information from previously classified neighbors to improve classification of remaining unclassified pixels. The classification was composed by two major steps, the a priori and the a posteriori classifications. The a priori algorithm classified the less difficult image portion. The a posteriori classifier operated on the more challenging image parts and strived to enhance accuracy by converting classified information from the a priori process into specific knowledge. The novelty of this work relies on the substitution of image-wide information with local spectral representations and spatial correlations, in essence classifying each pixel using exclusively neighboring behavior. Furthermore, the a posteriori classifier is a simple and intuitive algorithm, adjusted to perform in a localized setting for the task requirements. A 2001 and a 2006 Landsat scene from Central New York were used to assess the performance on an impervious classification task. The proposed method was compared with a back propagation neural network. Kappa statistic values in the corresponding applicable datasets increased from 18.67 to 24.05 for the 2006 scene, and from 22.92 to 35.76 for the 2001 scene classification, mostly correcting misclassifications between impervious and soil pixels. This finding suggests that simple classifiers have the ability to surpass complex classifiers through incorporation of partial results and an elegant multi-process framework.  相似文献   
210.
The main objective of the study is to identify groundwater potential zones in Thirumanimuttar basin with an integrated approach using Remote Sensing and geographical information system(GIS).FCC Image of Landsat TM 30 m resolution data and topographic maps has been used to generate thematic maps like geology,geomorphology,lineament and lineament density,drain-age,drainage density,and slope map of the study area.A number of geomorphic units such as Denudational hills,structural hills,Bajadas,Colluvial plain,Pediplain,Deep Pediment and Alluvial plains have been observed.A composite groundwater potential map has been generated as very high,high,medium,low and very low based on the groundwater availability area.The upper,mid-dle and downstream of the basins have been identified as potential zones for groundwater exploration.The regions of lineaments and intersecting lineaments proved for groundwater potential zones.The data generated was validated with field checks and ob-served to be in conformity with the same.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号