首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   22篇
  国内免费   39篇
测绘学   1篇
大气科学   1篇
地球物理   4篇
地质学   128篇
  2021年   7篇
  2020年   6篇
  2019年   8篇
  2018年   9篇
  2017年   14篇
  2016年   15篇
  2015年   15篇
  2014年   16篇
  2013年   8篇
  2012年   17篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1988年   1篇
排序方式: 共有134条查询结果,搜索用时 31 毫秒
91.
宽坪岩体位于北秦岭造山带东部,岩体主要由片麻状黑云母二长花岗岩和似斑状黑云母二长花岗岩组成。锆石LA-ICP MS U-Pb定年结果表明宽坪岩体可划分为两期:早期为片麻状黑云母二长花岗岩,其锆石U-Pb年龄为448.3±4.5 Ma,该期花岗岩富硅、富碱,属准铝质和高钾钙碱性系列,形成压力较低;晚期为似斑状黑云母二长花岗岩,其锆石U-Pb年龄为421.4±2.5 Ma,该期花岗岩属强过铝质和高钾钙碱性—钙碱性系列。系统的地球化学研究表明,早期的片麻状二长花岗起源于中上地壳(贫斜长石的源区)在H2O饱和条件下发生部分熔融形成的贫Al2O3、富Si O2花岗质岩浆;晚期的似斑状二长花岗岩代表较高温的中—下地壳(杂砂岩或是花岗质片麻岩)发生部分脱水熔融形成的岩浆,这表明北秦岭地区从450~420 Ma经历了从早期的同碰撞阶段到后期的后碰撞阶段。  相似文献   
92.
Titanite is a common accessory mineral that preferentially incorporates considerable amounts of U and light rare earth elements in its structure, making it a versatile mineral for in situ U‐Pb dating and Sm‐Nd isotopic measurement. Here, we present in situ U‐Pb ages and Sm‐Nd isotope measurement results for four well‐known titanite reference materials (Khan, BLR‐1, OLT1 and MKED1) and eight titanite crystals that could be considered potential reference material candidates (Ontario, YQ‐82, T3, T4, TLS‐36, NW‐IOA, Pakistan and C253), with ages ranging from ~ 20 Ma to ~ 1840 Ma. Results indicate that BLR‐1, OLT1, Ontario, MKED1 and T3 titanite have relatively homogeneous Sm‐Nd isotopes and low common Pb and thus can serve as primary reference materials for U‐Pb and Sm‐Nd microanalysis. YQ‐82 and T4 titanite can be used as secondary reference materials for in situ U‐Pb analysis because of their low common Pb. However, internal structures and mineral inclusions in YQ‐82 will require careful selection of suitable target domains. Pakistan titanite is almost concordant with an age of 21 Ma and can be used as a reference material when dating Cenozoic titanite samples.  相似文献   
93.
A rapid sample preparation procedure is described to determine trace element compositions of peridotites using LA‐ICP‐MS. Peridotite powders were fused with albite in a molybdenum–graphite assembly to obtain homogeneous glasses. Best conditions for the fusion procedure (heating at 1500–1550 °C for 10–15 min with a sample‐to‐flux ratio of 1:2) were constrained with melting experiments on two USGS reference materials, PCC‐1 and DTS‐2B. Mass fractions of first series transition elements, Ba and Pb, in quenched glasses of PCC‐1 and DTS‐2B are consistent with published data within 10% RSD. Three spinel peridotite xenoliths from eastern China were analysed following both our method and conventional solution ICP‐MS. Compared with solution ICP‐MS, the relative deviations of our method for most elements were within 10%, while for the REE, Ta, Pb, Th and U, the relative deviations were within 20%. In particular, volatile elements (e.g., Pb and Zn) are retained in the glass. Compared with conventional wet chemistry digestion, our method is faster. Additional advantages are complete sample fusion, especially useful for samples with acid‐resistant minerals (spinel and rutile), and long‐term conservation of glasses allowing unlimited repeated measurements with microbeam techniques. The same approach can be used for analyses of other mantle rocks, such as eclogites and pyroxenites.  相似文献   
94.
We present multitechnique U‐Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty‐five Th‐corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion‐isotope dilution‐thermal ionisation mass spectrometry (CA‐ID‐TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA‐ID‐TIMS date to within < 1.5%. Solution multi‐collector ICP‐MS (MC‐ICP‐MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s,= 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA‐ICP‐MS laboratories are in agreement with the solution MC‐ICP‐MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U‐Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.  相似文献   
95.
Fission‐track (FT) and (U–Th–Sm)/He (He) analyses are used to constrain the denudation pattern and history of the Kiso Range, a Japanese fault‐block mountain range which has been uplifted since ca 0.8 Ma. We obtained nine zircon FT ages ranging 59.3–42.1 Ma, 18 apatite FT ages ranging 81.9–2.3 Ma, and 13 apatite He ages ranging 36.7–2.2 Ma. The apatite FT and He ages are divided into an older group comparable to the zircon FT age range and a younger group of <18 Ma. The younger ages are interpreted as a reflection of uplift of the Kiso Range because they were obtained only to the east of the Seinaiji‐touge Fault, and the event age estimated from apatite FT data is consistent with the timing of the onset of the Kiso Range uplift. On the basis of the distribution of the younger ages, we propose westward tilting uplift of the Kiso Range between the boundary fault of the Inadani Fault Zone and Seinaiji‐touge Fault, which implies a model of bedrock uplift that is intermediate between two existing models: a pop‐up model in which the Kiso Range is squeezed upward between the two faults and a tilted uplift model which assumes that the Kiso Range is uplifted and tilted to the west by the Inadani Fault Zone. The original land surface before the onset of uplift/denudation of the Kiso Range is estimated to have been uplifted to an elevation of 2700–4900 m. We estimated denudation rates at 1.3–4.0 mm/y and maximum bedrock uplift rates at 3.4–6.1 mm/y since ca 0.8 Ma. The Seinaiji‐touge fault is interpreted as a back thrust of the west‐dipping Inadani Fault Zone. The older group of apatite FT and He ages is interpreted to reflect long‐term peneplanation with a probable denudation rate of <0.1 mm/y.  相似文献   
96.
The Hakusan volcano, central Japan, is located in a region where two subducting plates (the Pacific Plate and the Philippine Sea Plate) overlap near the junction of four plates adjacent to the Japanese Islands (the Pacific Plate, the Philippine Sea Plate, the Eurasia Plate, and the North American Plate). The Hakusan volcano consists of products from four major volcanic episodes: Kagamuro, Ko‐hakusan, and Shin‐Hakusan I and II. To date the eruption events of the Hakusan volcano we applied thermoluminescence and fission track methods. 238U(234U)–230Th disequilibrium and 206Pb/238U methods were applied to date the zircon crystallization ages for estimating the magma residence time before the eruptions. The eruption ages we obtained are ca 250 ka for Kagamuro, ca 100 ka and ca 60 ka for Ko‐Hakusan, ca 50 ka for Shin‐Hakusan I, and <10 ka for Shin‐Hakusan II. They are concordant with previous reports based on K–Ar dating. Some of the pyroclastic rocks, possibly originating from Shin‐Hakusan II activities, are dated to be ca 36 ka or 50 ka, and belong to the Shin‐Hakusan I activity. The zircon crystallization ages show several clusters prior to eruption. The magma residence time was estimated for each volcanic activity by comparing the major crystallization events and eruption ages, and we found a gradual decrease from ca. 500 ky for the Kagamuro activity to ca. 5 ky for the Shin‐Hakusan II activity. This decrease in residence time may be responsible for the decrease in volume of erupted material estimated from the current topography of the region. The scale of volcanic activity, which was deduced from the number of crystallized zircons, is more or less constant throughout the Hakusan volcanic activity. Therefore, the decrease in magma residence time is most likely the result of stress field change.  相似文献   
97.
There is currently a lack of well‐characterised matrix‐matched reference materials (RMs) for forensic analysis of U‐rich materials at high spatial resolution. This study reports a detailed characterisation of uraninite (nominally UO2+x) from the Happy Jack Mine (UT, USA). The Happy Jack uraninite can be used as a RM for the determination of rare earth element (REE) mass fractions in nuclear materials, which provide critical information for source attribution purposes. This investigation includes powder X‐ray diffraction (pXRD) data, as well as major, minor and trace element abundances determined using a variety of micro‐analytical techniques. The chemical signature of the uraninite was investigated at the macro (cm)‐scale with micro‐X‐ray fluorescence (µXRF) mapping and at high spatial resolution (tens of micrometre scale) using electron probe microanalysis (EPMA) and laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analyses. Based on EPMA results, the uraninite is characterised by homogeneous UO2 and CaO contents of 91.57 ± 1.49% m/m (2s uncertainty) and 2.70 ± 0.38% m/m (2s), respectively. Therefore, CaO abundances were used as the internal standard when conducting LA‐ICP‐MS analyses. Overall, the major element and REE compositions are homogeneous at both the centimetre and micrometre scales, allowing this material to be used as a RM for high spatial resolution analysis of U‐rich samples.  相似文献   
98.
王峰 《中国地质》2021,48(1):207-228
龙岩宣和岩体是闽西南地区呈北东向弧形出露,最大的燕山期—加里东期复式岩体,但是有关该岩体的形成时代及成岩环境的认识仍存在分歧,进而制约了对闽西南地区构造环境的探讨.文章以出露于闽西南地区的宣和正长花岗岩为研究对象,在详细野外地质调查基础上,开展了岩石学、LA?ICP?MS锆石U?Pb地质年代学、岩石地球化学及Sr?Nd...  相似文献   
99.
An efficient, clean procedure for the measurement of element mass fractions in bulk rock nanoparticulate pressed powder pellets (PPPs) by 193 nm laser ablation ICP‐MS is presented. Samples were pulverised by wet milling and pelletised with microcrystalline cellulose as a binder, allowing non‐cohesive materials such as quartz or ceramics to be processed. The LA‐ICP‐MS PPP analytical procedure was optimised and evaluated using six different geological reference materials (JP‐1, UB‐N, BCR‐2, GSP‐2, OKUM and MUH‐1), with rigorous procedural blank quantification employing synthetic quartz. Measurement trueness of the procedure was equivalent to that achieved by solution ICP‐MS and LA‐ICP‐MS analysis of glass. The measurement repeatability was as low as 0.5–2% (1s,= 6) and, accordingly, PPP homogeneity could be demonstrated. Calibration based on the reference glasses NIST SRM 610, NIST SRM 612, BCR‐2G and GSD‐1G revealed matrix effects for glass and PPP measurement with NIST SRM 61×; using basalt glasses eliminated this problem. Most significantly, trace elements not commonly measured (flux elements Li, B; chalcophile elements As, Sb, Tl, In, Bi) could be quantified. The PPP‐LA‐ICP‐MS method overcomes common problems and limitations in analytical geochemistry and thus represents an efficient and accurate alternative for bulk rock analysis.  相似文献   
100.
Fused glass prepared without the addition of a flux is generally more homogeneous than a pressed powder pellet and thus ideal for analysis of bulk samples by LA‐ICP‐MS. In this work, a new glass‐making method using a boron nitride crucible was developed to prepare homogenous glass samples from silicate rock powder. The apparatus consisted of a small boron nitride vessel with net volume of about 34 mm3 and two molybdenum strips. Applying the summed metal oxide normalisation technique, both major and trace element contents in the fused glass were measured by LA‐ICP‐MS. Analyses of five geochemical reference materials (spanning the compositional range basalt–andesite–rhyolite) indicated that the measured SiO2, Al2O3 and P2O5 contents matched the preferred values to within 5%, and the other major elements generally matched the preferred values to within 8%. Except for the transition metals, the measured trace element contents generally matched the preferred values to within 10%. Compared with the iridium heater method developed by Stoll et al. (2008), element volatilisation during high‐temperature melting was effectively suppressed in our method, but metal segregation caused by reduction of BN may cause loss of Cr, Ni and Cu. Although analysis with a large spot size has the advantage of improving counting statistics, matrix effects induced by mass loading of the ICP may hamper the accurate determination of some elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号