首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   22篇
  国内免费   40篇
测绘学   1篇
大气科学   1篇
地球物理   4篇
地质学   132篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2020年   6篇
  2019年   8篇
  2018年   9篇
  2017年   14篇
  2016年   15篇
  2015年   15篇
  2014年   16篇
  2013年   8篇
  2012年   17篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1988年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
81.
Ophiolites exposed across the western Tauride Belt in SW Turkey represent tectonically emplaced fragments of oceanic lithosphere incorporated into continental margin following the closure of the Neotethys Ocean during the Late Cretaceous. The mantle sections of the ophiolites contain peridotites with diverse suites of geochemical signatures indicative of residual origin by melt depletion in both mid‐ocean ridge (MOR) and supra‐subduction zone (SSZ) settings. This study uses a laser‐ablation inductively‐coupled plasma‐mass spectrometry (LA‐ICP‐MS) for in situ measurements of trace elements in primary mantle phases in order to identify the upper mantle petrogenetic processes effective during variable stage of melt extraction in these discrete tectonic settings and to discriminate between the effects of reaction with chemically distinct mantle melts migrating through the solid residues. Trace element signatures in pyroxenes suggest small‐length scales of compositional variations which may be interpreted to be a result of post‐melting petrogenetic processes. Relative distribution of rare earth elements and Li between coexisting orthopyroxene‐clinopyroxene pairs in the peridotites suggests compositional disequilibrium in sub‐solidus conditions, which possibly reflects differential effects of diffusive exchange during melting and melt transport or interaction with subduction melts/fluids. On the basis of Ga abundances and Ga–Ti–Fe+3# [Fe+3/(Fe+3 + Cr + Al)] relationships of chrome‐spinels it is documented that the peridotites have experienced the combined effects of partial melting and variable extent of melt‐solid interaction. The MOR peridotites have spinels with geochemical signatures indicative of melt‐depleted residual origin with subsequent incompatible element enrichment through melt impregnation, while the Ga–Ti–Fe+3# relationships of chrome‐spinels in SSZ peridotites indicate that these highly depleted peridotites are not simple melt residues, but have been subject to significant compositional modification by interaction with subduction related melts/fluids. The observed compositional variations, which are related to long‐term tectonic reorganisation of oceanic lithosphere, provide evidence for a time integrated evolution from a mid‐ocean ridge to a supra‐subduction zone setting and may be a possible analogue to explain the coexistence of geochemically diverse MOR–SSZ suites in other Tethyan ophiolites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
82.
We have conducted geochemical and mineralogical investigations of the rare earth and yttrium (REY)‐rich mud from the Minami‐Torishima area in the Pacific in order to clarify the concentration of REY and their host‐phase in the mud. X‐ray diffraction analysis shows that the mud is mainly composed of phillipsite, fluorapatite, quartz, albite, illite and montmorillonite. Whole‐rock CaO, P2O5 and total REY contents of the mud are positively correlated. Relative abundance of apatite is also positively correlated to P2O5 and total REY contents. These correlations suggest that apatite is the main host of the P2O5 and REY in the mud. We make in situ compositional analyses of constituent minerals in the REY mud. The results show that the apatite is abundant in REY (9300–32,000 ppm) and is characterized by a negative Ce anomaly and enrichment in heavy rare‐earth elements. This abundance and composition of REY of the mud is similar those of fish debris apatites. In contrast, phillipsite is less abundant in REY (60–170 ppm). Therefore we conclude that the main REY host phase of the mud is apatite.  相似文献   
83.
The Huaixi copper-gold polymetallic deposit of SE Zhejiang Province, China, is a typical hydrothermal-vein ore body. The Caomen K-feldspar granite porphyry, the dominant intrusion in the mining district, has been dated by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) analyses of zircon, which yielded a weighted mean 206Pb/238U age of 101.6 ± 0.9 Ma (MSDW?=?1.3). Rb-Sr dating of fluid inclusions in auriferous quartz from ore bodies yielded an isochron age of 101 ± 2 Ma. These results indicate that intrusion of the Caomen pluton and Cu-Au mineralization was contemporaneous and corresponds to the third episode of Mesozoic magmatism and metallogenesis in South China. Calculated δ18O values of fluid inclusions from ore-bearing quartz range from??0.89 to??1.98‰ and δD from??42.60 to??60.20‰, suggesting that the ore-forming fluids are derived from a mixed source of magmatic and meteoric waters. δ18S values of 8 pyrites range from??2.14 to?+4.14‰ with a mean of?+1.67‰, similar to magmatic sulphur. These isotope data support a genetic relationship between the Huaixi copper-gold deposit and the Caomen alkaline granite and probably indicate a common deep source. Petrography and chemical compositions show that the Caomen alkaline granite crystallized from shoshonitic magmas characterized by high SiO2 (75.64–78.00%) and alkali (K2O?+?Na2O?=?7.96–8.82%) but low FeOT (1.34–3.31%), P2O5 (0.05–0.13%) and TiO2 (0.12–0.18%). The granitic rocks are enriched in Ga, Rb, Th, U, and Pb but depleted in Ba, Nb, Sr, P, and Ti. REEs are characterized by marked negative Eu anomalies (Eu/Eu*?=?0.06–0.13) and exhibit right-dipping ‘V’ patterns with LREE enrichment. These are similar to the Late Cretaceous alkaline granites in the coastal areas of Zhejiang and Fujian provinces, implying that the Caomen granite formed in a post-collisional extensional tectonic setting. Combined with previous studies, we interpret the Huaixi copper-gold deposit and the associated Caomen alkaline granite as related to back-arc extension due to high-angle subduction of the palaeo-Pacific plate, caused by northward movement of the Indian plate.  相似文献   
84.
Fission‐track (FT) and (U–Th–Sm)/He (He) analyses are used to constrain the denudation pattern and history of the Kiso Range, a Japanese fault‐block mountain range which has been uplifted since ca 0.8 Ma. We obtained nine zircon FT ages ranging 59.3–42.1 Ma, 18 apatite FT ages ranging 81.9–2.3 Ma, and 13 apatite He ages ranging 36.7–2.2 Ma. The apatite FT and He ages are divided into an older group comparable to the zircon FT age range and a younger group of <18 Ma. The younger ages are interpreted as a reflection of uplift of the Kiso Range because they were obtained only to the east of the Seinaiji‐touge Fault, and the event age estimated from apatite FT data is consistent with the timing of the onset of the Kiso Range uplift. On the basis of the distribution of the younger ages, we propose westward tilting uplift of the Kiso Range between the boundary fault of the Inadani Fault Zone and Seinaiji‐touge Fault, which implies a model of bedrock uplift that is intermediate between two existing models: a pop‐up model in which the Kiso Range is squeezed upward between the two faults and a tilted uplift model which assumes that the Kiso Range is uplifted and tilted to the west by the Inadani Fault Zone. The original land surface before the onset of uplift/denudation of the Kiso Range is estimated to have been uplifted to an elevation of 2700–4900 m. We estimated denudation rates at 1.3–4.0 mm/y and maximum bedrock uplift rates at 3.4–6.1 mm/y since ca 0.8 Ma. The Seinaiji‐touge fault is interpreted as a back thrust of the west‐dipping Inadani Fault Zone. The older group of apatite FT and He ages is interpreted to reflect long‐term peneplanation with a probable denudation rate of <0.1 mm/y.  相似文献   
85.
The Hakusan volcano, central Japan, is located in a region where two subducting plates (the Pacific Plate and the Philippine Sea Plate) overlap near the junction of four plates adjacent to the Japanese Islands (the Pacific Plate, the Philippine Sea Plate, the Eurasia Plate, and the North American Plate). The Hakusan volcano consists of products from four major volcanic episodes: Kagamuro, Ko‐hakusan, and Shin‐Hakusan I and II. To date the eruption events of the Hakusan volcano we applied thermoluminescence and fission track methods. 238U(234U)–230Th disequilibrium and 206Pb/238U methods were applied to date the zircon crystallization ages for estimating the magma residence time before the eruptions. The eruption ages we obtained are ca 250 ka for Kagamuro, ca 100 ka and ca 60 ka for Ko‐Hakusan, ca 50 ka for Shin‐Hakusan I, and <10 ka for Shin‐Hakusan II. They are concordant with previous reports based on K–Ar dating. Some of the pyroclastic rocks, possibly originating from Shin‐Hakusan II activities, are dated to be ca 36 ka or 50 ka, and belong to the Shin‐Hakusan I activity. The zircon crystallization ages show several clusters prior to eruption. The magma residence time was estimated for each volcanic activity by comparing the major crystallization events and eruption ages, and we found a gradual decrease from ca. 500 ky for the Kagamuro activity to ca. 5 ky for the Shin‐Hakusan II activity. This decrease in residence time may be responsible for the decrease in volume of erupted material estimated from the current topography of the region. The scale of volcanic activity, which was deduced from the number of crystallized zircons, is more or less constant throughout the Hakusan volcanic activity. Therefore, the decrease in magma residence time is most likely the result of stress field change.  相似文献   
86.
In both nature and synthetic experiments, the common iron oxide haematite (α‐Fe2O3) can incorporate significant amounts of U into its crystal structure and retain radiogenic Pb over geological time. Haematite is a ubiquitous component of many ore deposit types and, therefore, represents a valuable hydrothermal mineral geochronometer, allowing direct constraints to be placed on the timing of ore formation and upgrading. However, to date, no suitable natural haematite reference material has been identified. Here, a synthetic haematite U‐Pb reference material (MR‐HFO) is characterised using LA‐ICP‐MS and ID‐TIMS. Centimetre‐scale ‘chips’ of synthesised α‐Fe2O3 were randomly microsampled via laser ablation‐extraction and analysed using ID‐TIMS. Reproducible U/Pb and Pb/Pb measurements were obtained across four separate chips (n = 13). Subsequently, an evaluation of the suitability MR‐HFO in constraining U‐Pb data via LA‐ICP‐MS is presented using a selection of natural samples ranging from Cenozoic to Proterozoic in age. The MR‐HFO normalised U‐Pb ratios are more concordant and ages more accurate versus the same LA‐ICP‐MS spot analyses normalised to zircon reference material, when compared with independently acquired ID‐TIMS data from the same natural haematite grains. Results establish MR‐HFO as a suitable reference material for LA‐ICP‐MS haematite U‐Pb geochronology.  相似文献   
87.
A rapid sample preparation procedure is described to determine trace element compositions of peridotites using LA‐ICP‐MS. Peridotite powders were fused with albite in a molybdenum–graphite assembly to obtain homogeneous glasses. Best conditions for the fusion procedure (heating at 1500–1550 °C for 10–15 min with a sample‐to‐flux ratio of 1:2) were constrained with melting experiments on two USGS reference materials, PCC‐1 and DTS‐2B. Mass fractions of first series transition elements, Ba and Pb, in quenched glasses of PCC‐1 and DTS‐2B are consistent with published data within 10% RSD. Three spinel peridotite xenoliths from eastern China were analysed following both our method and conventional solution ICP‐MS. Compared with solution ICP‐MS, the relative deviations of our method for most elements were within 10%, while for the REE, Ta, Pb, Th and U, the relative deviations were within 20%. In particular, volatile elements (e.g., Pb and Zn) are retained in the glass. Compared with conventional wet chemistry digestion, our method is faster. Additional advantages are complete sample fusion, especially useful for samples with acid‐resistant minerals (spinel and rutile), and long‐term conservation of glasses allowing unlimited repeated measurements with microbeam techniques. The same approach can be used for analyses of other mantle rocks, such as eclogites and pyroxenites.  相似文献   
88.
LA‐ICP‐MS is one of the most promising techniques for in situ analysis of geological and environmental samples. However, there are some limitations with respect to measurement accuracy, in particular for volatile and siderophile/chalcophile elements, when using non‐matrix‐matched calibration. We therefore investigated matrix‐related effects with a new 200 nm femtosecond (fs) laser ablation system (NWRFemto200) using reference materials with different matrices and spot sizes from 10 to 55 μm. We also performed similar experiments with two nanosecond (ns) lasers, a 193 nm excimer (ESI NWR 193) and a 213 nm Nd:YAG (NWR UP‐213) laser. The ion intensity of the 200 nm fs laser ablation was much lower than that of the 213 nm Nd:YAG laser, because the ablation rate was a factor of about 30 lower. Our experiments did not show significant matrix dependency with the 200 nm fs laser. Therefore, a non‐matrix‐matched calibration for the multi‐element analysis of quite different matrices could be performed. This is demonstrated with analytical results from twenty‐two international synthetic silicate glass, geological glass, mineral, phosphate and carbonate reference materials. Calibration was performed with the certified NIST SRM 610 glass, exclusively. Within overall analytical uncertainties, the 200 nm fs LA‐ICP‐MS data agreed with available reference values.  相似文献   
89.
王峰 《中国地质》2021,48(1):207-228
龙岩宣和岩体是闽西南地区呈北东向弧形出露,最大的燕山期—加里东期复式岩体,但是有关该岩体的形成时代及成岩环境的认识仍存在分歧,进而制约了对闽西南地区构造环境的探讨.文章以出露于闽西南地区的宣和正长花岗岩为研究对象,在详细野外地质调查基础上,开展了岩石学、LA?ICP?MS锆石U?Pb地质年代学、岩石地球化学及Sr?Nd...  相似文献   
90.
南秦岭地区印支期花岗质岩浆侵入活动频繁,出现了不同类型的花岗岩,高锶低钇花岗岩就是其中的一种,前人对其进行了广泛的研究,但仍有不同的认识。枣木栏岩体位于南秦岭光头山岩体群北部,为典型的印支期高锶低钇花岗岩,前人对其缺乏研究。本文在对其详细野外地质调查的基础上,进行了较系统的岩石学、岩石地球化学、LA-ICP-MS锆石U-Pb年代学研究,认为其主体为石英闪长岩,岩石中发育大量的暗色包体,低SiO_2(53.72%~62.21%),高镁(MgO:3.84%~7.19%),高Mg~#(65~70),属于准铝质高钾钙碱性岩石。岩石具有高Sr(402×10~(-6)~811×10~(-6))、低Y(5.91×10~(-6)~12.7×10~(-6),18×10~(-6))和重稀土,Yb含量为0.58×10~(-6)~1.22×10~(-6),1.8×10~(-6)),高Sr/Y比值(35~94)的高锶低钇中酸性岩(Adakite)的典型地球化学特征。LA-ICP-MS锆石U-Pb年龄为199±3Ma(MSWD=4.3),限定枣木栏岩体的形成时代为晚三叠世晚期—早侏罗世早期。结合区域地质资料,认为其应该是主碰撞造山后期,地壳加厚背景下形成的具有高锶低钇属性的壳幔混合花岗岩。同时表明南秦岭地区在200Ma左右,仍为后碰撞构造环境,为区域构造演化提供了信息。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号