首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   6篇
地球物理   1篇
地质学   20篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2010年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2004年   2篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
排序方式: 共有21条查询结果,搜索用时 858 毫秒
11.
翟明国  从柏林 《岩石学报》1995,11(3):257-272
蓝晶石在大别山含柯石英和不含柯石英的榴辉岩、高压变质的副片麻岩、非高压变质的宿松群的变质沉积岩中都是重要的变质矿物。它们多有冠状或其它的变质反应结构,形成多样化的退变质反应矿物。有些退变质反应是十分罕见的。本文报道了8种蓝晶石的矿物组合和退变质反应,推测和计算了变质反应的温度-压力条件,从而探讨了它们代表的近等温降压、升温降压和流体为重要因素的降温降压的不同的动力学过程。这些数据与用其它变质矿物所得到的温度压力条件和PTt演化基本一致。为探讨大别山超高压变质带的构造演化提供了新的依据。  相似文献   
12.
This study examines the electron localization function (ELF) isosurfaces of the Al2SiO5 polymorphs kyanite, sillimanite, and andalusite to see how differences in coordination and geometry of the cations and anions affect the ELF isosurfaces. Examination of the ELF isosurfaces indicates that their shapes are dependent on the coordination and geometry of the oxygen atoms and are not sensitive to coordination of the surrounding cations. Of the 18 crystallographically distinct oxygen atoms in the Al2SiO5 polymorphs, 13 are bonded to two aluminum atoms and one silicon atom (Al2–O–Si) and are associated with two different ELF isosurface shapes. The shape of the ELF isosurface is dependent on the distance at which the oxygen atom lies from a plane defined by the three surrounding cations: at a distance greater than 0.2 Å the ELF can be defined as horseshoe-shaped and at a distance less then 0.2 Å it can be described as concave hemispherical. This feature is also seen in the ELF isosurfaces for the oxygens bonded to three aluminum atoms (Al3–O) where the isosurfaces can be defined as trigonally toroidal and uniaxially trigonally toroidal. The changes in the ELF isosurfaces for the three coordinated oxygens are also indicative of changes in hybridization. The ELF isosurface for the two-fold coordinated oxygen (Al–O–Si) has a large mushroom-shaped isosurface along the Al–O bond and a concave hemispherical isosurface along the Si–O. The four-fold coordinated oxygen (Al4–O) contains two concave hemispherical isosurfaces along the shorter Al–O bonds and a banana-shaped isosurface, which encompasses the longer Al–O bonds. In addition, this study shows the homeomorphic relationship between the ELF isosurfaces and electron density difference maps with respect to number and arrangement of domains.  相似文献   
13.
Z.V. Spetsius   《Lithos》2004,77(1-4):525-538
Highly aluminous xenoliths include kyanite-, corundum- and coesite-bearing eclogites, grospydites and alkremites. These xenoliths are present in different kimberlites of Yakutia but have most often been found in Udachnaya and other pipes of the central Daldyn–Alakitsky region. Kimberlites of this field also contain eclogite-like xenoliths with kyanite and corundum that originate in the lower crust or the lower crust–upper mantle transition zone. Petrographic study shows that two rock groups of different structure and chemistry can be distinguished among kyanite eclogites: fine- to medium-grained with mosaic structure and coarse-grained with cataclastic structure. Eclogites with mosaic structure are characterized by the occurrences of symplectite intergrowths of garnet with kyanite, clinopyroxene and coesite; only in this group do grospydites occur. In cataclastic eclogites, coarse-grained coesite occurs, corresponding in size to other rock-forming minerals. Highly aluminous xenoliths differ from bimineralic eclogites in their high content of Al2O3 and total alkali content. Coesite-bearing varieties are characterized by low MgO content and higher Na/K and Fe2+/Fe3+ ratios, as well as high contents of Na2O. Geochemical peculiarities of kyanite eclogites and other rocks are exhibited by a sloping chondrite-normalized distribution of rare earth elements (REE) in garnets and low Y/Zr ratio, in contrast to bimineralic rocks. Coesite is found in more than 20 kyanite eclogites and grospydites from Udachnaya. Grospydites with coesite from Zagadochnaya pipe are described. Three varieties of coesite in these rocks are distinguished: (a) subhedral grains with size of 1.0–3.0 mm; (b) inclusions in the rock-forming minerals; (c) sub-graphic intergrowths with garnet. The presence and preservation of coesite in eclogites indicate both high pressure of formation (more than 30 kbar) and set a number of constraints on the timing of xenolith cooling during entrainment and transport to the surface. Different ways of formation of the highly aluminous eclogites are discussed. Petrographic observations and geochemistry suggest that some highly aluminous rocks have formed as a result of crystallization of anorthosite rocks in abyssal conditions. δ18O-estimations and other petrologic evidence point out the possible origin of some of these xenoliths as the result of subduction of oceanic crust. Diamondiferous samples have been found in all varieties except alkremites. Usually these eclogites contain cubic or coated diamonds. However, two sample corundum-bearing eclogites with diamonds from the Udachnaya pipe contain octahedra that show evidence of resorption.  相似文献   
14.
The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental temperature range. Data for the unit-cell parameters and temperatures were fitted empirically resulting in the following thermal expansion coefficients: aa = 5.8(3) × 10-5, ab = 5.8 (1) × 10-5, ac% = 5.2(1) × 10-5, and av = 7.4(1) × 10-3 ℃-1, in good agreement with a recent neutron powder diffraction study. On the other hand, the variation of the unit-cell angles a, β and γ of kyanite with increase in temperature is very complicated, and the agreement among all studies is poor. The thermal expansion data at ambient pressure reported here and the compression data at ambient temperature from the literature suggest that, for the kyanite lattice, the most and least thermally expandable directions correspond to the most and least compressible directions, respectively.  相似文献   
15.
In order to constrain the high-pressure behavior of kyanite, multi-anvil experiments have been carried out from 15 to 25 GPa, and 1,350 to 2,500°C. Both forward and reversal approaches to phase equilibria were adopted in these experiments. We find that kyanite breaks down to stishovite + corundum at pressures above ∼15 GPa, and stishovite + corundum should be the stable phase assemblage at the pressure–temperature conditions of the transition zone and the uppermost part of the lower mantle of the Earth, in agreement with previous multi-anvil experimental studies and ab initio calculation results, but in disagreement with some of the diamond-anvil cell experimental studies in the literature. The Al2O3 solubility in nominally dry stishovite has been tightly bracketed by forward and reversal experiments; it is slightly but consistently reduced by pressure increase. Its response to temperature increase, however, is more complicated: increases at low temperatures, maximizes at around 2,000°C, and perhaps decreases at higher temperatures. Consequently, the Al2O3 solubility in dry stishovite at conditions of high temperature–high pressure is very limited.  相似文献   
16.
Metamorphic zones in the Chinese Altai orogen have previously been separated into the kyanite- and andalusite-types, the andalusite-type being spatially more extensive. The kyanite-type involves a zonal sequence of biotite, garnet, staurolite, kyanite, sillimanite and, locally, garnet–cordierite zones. The andalusite-type zonal sequence is similar: it includes biotite, garnet and staurolite zones at lower-T conditions and sillimanite and garnet–cordierite zones at higher-T conditions, but additionally contains staurolite–andalusite and andalusite–sillimanite zones at intermediate-T conditions. As relic kyanite-bearing assemblages commonly persist in the staurolite–andalusite, andalusite–sillimanite and sillimanite zones, it is not clear that the distinction is valid. On the basis of a reevaluation of phase relations modelled in KMnFMASH and KFMASH pseudosections, kyanite and andalusite-bearing rocks of the Chinese Altai orogen record, respectively, the typical burial and exhumation history of the terrane. Mineral assemblages distributed through the various zones reflect a mix of portions of the ambient PT array and the effects of evolving PT conditions. The comparatively low-T biotite, garnet and staurolite zones mostly preserve kyanite-type peak assemblages that only experienced minor changes during exhumation. Rocks in the comparatively high-T sillimanite and garnet–cordierite zones are dominated by mineral assemblages of a transitional sillimanite type, having formed by the extensive modification of earlier higher pressure assemblages during exhumation. Only rocks in the intermediate-T kyanite and probably some lower sillimanite zones were clearly recrystallized by late stage andalusite metamorphism, producing the staurolite–andalusite and andalusite–sillimanite zones. This andalusite metamorphism could not reach an equilibrium state because of limited fluid availability.  相似文献   
17.
Potential protonation sites for, kyanite, sillimanite, and andalusite, located in a mapping of the (3, −3) critical points displayed by their L(r) = −∇2ρ(r) distributions, are compared with polarized single-crystal FTIR spectra of kyanite and sillimanite determined earlier and with andalusite measured in this study. For andalusite, seven peaks were observed when the electric vector, E, is parallel to [100]: four intense ones at 3,440, 3,460, 3,526, and 3,597 cm−1 and three weaker ones at 3,480, 3,520, and 3,653 cm−1. Six peaks, three intense ones at 3,440, 3,460, and 3,526 cm−1 and three weaker ones at 3,480, 3,520, and 3,653 cm−1 when E parallels [010]. No peaks were observed when E is parallel to [001]. The concentration of water in andalusite varies between 110 and 168 ppm by weight % H2O. Polarized FTIR spectra indicate that the OH vector is parallel to (001) in andalusite and sillimanite and in kyanite. Examination of the L(r) (3, −3) critical points in comparison with the polarized FTIR indicates that H prefers to bond to the oxygen atoms O1 and O2 in andalusite and O2 and O4 in sillimanite which correspond to the underbonded oxygen atoms and those with the largest L(r) maxima. In kyanite, comparison of the FTIR spectrum and the critical points indicates that H will preferentially bond to the two 4-coordinated O2 and O6 atoms.  相似文献   
18.
Kyanite-rich and quartz-rich eclogites occur as lenses within amphibolite-facies quartzo-feldspathic gneisses in the Pohorje Mountains, Northern Slovenia, that form the easternmost Austroalpine basement. Major and trace elements indicate that the kyanite-rich eclogites were derived from plagioclase-rich gabbroic cumulates, whereas the quartz-rich eclogites represent more fractionated basaltic compositions. Both varieties are characterized by a LREE-depleted N-MORB type REE signature. Geothermobarometry and P-T pseudosections indicate that eclogites equilibrated at 1.8-2.5 GPa and 630-700 °C, consistently with the lack of coesite and with equilibration conditions of the chemically similar eclogites from the adjacent basement units at Koralpe and Saualpe type localities. Decompression reaction textures include (i) clinopyroxene-plagioclase intergrowths after omphacite, (ii) replacement of kyanite by corundum-plagioclase-spinel±sapphirine symplectites, (iii) breakdown of phengite to biotite-plagioclase sapphirine symplectites. The results of this study indicate that Koralpe, Saualpe and Pohorje high-pressure rocks represent former MORB-type oceanic crust that was subducted in the course of the late Cretaceous (approximately 100 Ma ago) collision between the European and the Apulian plates.  相似文献   
19.
In this study, we have investigated the formation of quartz–kyanite veins of the Alpe Sponda, Central Alps, Switzerland. We have integrated field observations, fluid inclusion and stable isotope data and combined this with numerical geochemical modeling to constrain the chemical processes of aluminum transport and deposition. The estimated P–T conditions of the quartz–kyanite veins, based on conventional geothermometry (garnet–biotite, white mica solvus and quartz–kyanite oxygen isotope thermometry) and fluid inclusion data, are 550 ± 30°C at 5.0 ± 0.5 kbar. Geochemical modeling involved construction of aqueous species predominance diagrams, calculation of kyanite and quartz solubility, and reaction–path simulations. The results of the modeling demonstrate that (1) for the given chemical composition of the vein-forming fluids mixed Al–Si aqueous species are dominant in transporting Al, and that (2) fluid cooling along a small temperature gradient coupled with a pH decrease is able to explain the precipitation of the quartz–kyanite assemblages in the proportions that are observed in the Alpe Sponda veins. We conclude that sufficient amounts of Al can be transported in typical medium- to high-grade regional metamorphic fluids and that immobile behavior of Al is not very likely in advection–dominanted fluid–rock systems in the upper and middle crust.  相似文献   
20.
Shock-induced Ti-rich melt pockets in a basaltic eucrite Northwest Africa (NWA) 8003 were studied using scanning and transmission electron microscopy. Unique mineral assemblages consisting of clinopyroxene, ilmenite, vestaite, corundum, and kyanite are observed. Among them, vestaite and corundum in NWA 8003 are first reported to occur in eucrite meteorites. Petrographic and chemical evidences indicate that the Ti-rich melt pockets have formed by in-situ melting of ilmenite, plagioclase, pyroxene, and possibly minor silica and apatite nearby. The temperature rise and melting were caused by the high shock impedance contrast at interfaces between ilmenite and other phases with a distinctly lower density. Crystallization pressure, temperature and cooling time of the Ti-rich melt pockets in NWA 8003 are constrained to be ˜0.9–˜10 GPa, ˜1300–˜1730 °C, and < 1 ms (5–50 μm in size), respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号