首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3976篇
  免费   1138篇
  国内免费   2174篇
测绘学   24篇
大气科学   84篇
地球物理   903篇
地质学   5653篇
海洋学   67篇
天文学   97篇
综合类   261篇
自然地理   199篇
  2024年   35篇
  2023年   84篇
  2022年   180篇
  2021年   181篇
  2020年   186篇
  2019年   245篇
  2018年   231篇
  2017年   247篇
  2016年   267篇
  2015年   280篇
  2014年   281篇
  2013年   265篇
  2012年   339篇
  2011年   291篇
  2010年   269篇
  2009年   330篇
  2008年   220篇
  2007年   318篇
  2006年   319篇
  2005年   283篇
  2004年   293篇
  2003年   299篇
  2002年   240篇
  2001年   203篇
  2000年   218篇
  1999年   214篇
  1998年   177篇
  1997年   139篇
  1996年   113篇
  1995年   120篇
  1994年   106篇
  1993年   98篇
  1992年   67篇
  1991年   31篇
  1990年   35篇
  1989年   24篇
  1988年   21篇
  1987年   14篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1979年   6篇
  1954年   3篇
排序方式: 共有7288条查询结果,搜索用时 147 毫秒
951.
《International Geology Review》2012,54(11):1311-1358
Molybdenum exploration activity in China has accelerated tremendously during the past decade owing to the continuous, increasing demand for Earth resources. China possesses the largest Mo reserves in the world (exceeding 19.6 Mt). The major ore deposits are of porphyry, porphyry–skarn, skarn, vein, and sedimentary types. Porphyry molybdenum deposits contain 77.5% of the Chinese Mo reserves, with lesser amounts in porphyry–skarns (13%), skarns (5.1%), and veins (4.4%). Exploitation of sedimentary-type molybdenum deposits thus far has been uneconomical. The six Mo provinces are in the Northeast China, Yanliao, Qinling–Dabie, middle–lower Yangtze River Valley, South China, and Sanjiang areas. We recognize six ore-forming periods: (1) Precambrian (>541 Ma), (2) Palaeozoic (541–250 Ma), (3) Triassic (250–200 Ma), (4) Jurassic–Early Cretaceous (190–135 Ma), (5) Cretaceous (135–90 Ma), and (6) Cenozoic (55–12 Ma). The abundance of Mo ore deposits in China reflects the occurrence of multiple periods of tectonism, involving interactions between the Siberian, North China, Yangtze, India, and Palaeo-Pacific plates. Precambrian molybdenum deposits are related to Mesoproterozoic volcanism in an extensional setting. Palaeozoic Cu–Mo deposits are related to calc-alkaline granitic plutons in an island arc or a continental margin setting. Triassic Mo deposits formed in the syn-collision–postcollision tectonic setting between the Siberian and North China plates and between the North China and Yangzi plates. Jurassic–Early Cretaceous molybdenum deposits formed along the eastern margin of Asia and are associated with the palaeo-Pacific plate-subduction tectonic setting. Cretaceous Mo deposits are related to high-K calc-alkaline granitic rocks and formed in a lithospheric thinning setting. Cenozoic molybdenum deposits formed in a collision setting between the Indian and Eurasian continents and the subsequent extensional setting.  相似文献   
952.
We used illite Ar/Ar dating to obtain absolute ages of folds and shear zones formed within the Mexican Fold–Thrust Belt (MFTB). The methodology takes advantage of illite dating in folded, clay-bearing layers and the ability to obtain accurate ages from small-size fractions of illite using encapsulated Ar analysis. We applied our approach to a cross-section that involves folded Aptian–Cenomanian shale-bentonitic layers interbedded with carbonates of the Zimapán (ZB) and Tampico–Misantla (TMB) Cretaceous basins in central-eastern Mexico. Basinal carbonates were buried by syn-tectonic turbidites and inverted during the formation of the MFTB in the Late Cretaceous. Results from folds and shear zones record different pulses of deformation within this thin-skinned orogenic wedge.

Mineralogical compositions, variations in illite polytypes, illite crystallite size (CS), and Ar/Ar ages were obtained from several size fractions in limbs and hinges of the folds and in the shear zones. 1Md-illite polytype (with CS of 6–9 nm) dominates in two folds in the TMB while 2M1-illlite (with CS of 14–30 nm) dominates in the third fold, in the ZB, and in the fold/shear zone. From west (higher grade) to east (lower grade): Ar retention ages indicate shearing occurred at ~84 Ma in the westernmost shear zone, folding at ~82 Ma in the ZB with subsequent localized shearing at ~77 Ma, and Ar total gas ages constrain the time of folding at ~64 Ma on the west side of the TMB and ~44 Ma on the eastern edge. These results are consistent with the age and distribution of syn-tectonic turbidites and indicate episodic progression of deformation from west to east.  相似文献   
953.
采用GeoMine3D软件对胶西北上庄金矿进行了三维地质建模。三维地质模型全面展现了矿体、望儿山断裂带及下伏郭家岭岩体的空间关系:金矿体受望儿山断裂带控制,在断裂带中具有丛聚性、似等距性、侧伏性的分布特征,其主要赋存在断裂带产状变化大的位置;郭家岭岩体与金矿的成岩成矿关系密切,岩体顶界面控制主要矿体的产出,其转折端或岩突处为金矿富集的有利位置。研究结果显示:上庄金矿深部仍具有较大的找矿潜力。  相似文献   
954.
李学刚  杨坤光  王军 《现代地质》2012,26(2):308-316
运用α石英热活化ESR定年法对东秦岭—大别造山带南、北缘58件样品进行了研究。结果显示,东秦岭—大别造山带南、北缘ESR年龄范围主要集中在晚白垩世以来(99.2~3.4 Ma)。结合区域地质事实分析,晚白垩世以来,东秦岭—大别造山带南缘的构造演化可划分为73.1~52.3 Ma伸展断陷期、39.1~27.2 Ma伸展-挤压的转换期和22.8~3.4 Ma挤压期;东秦岭—大别造山带北缘的构造演化可划分为89~70.1 Ma挤压隆升期、61.6~43.2 Ma伸展断陷期、37.2~22.6 Ma伸展-挤压的转换期和15.6~3.9 Ma挤压期。东秦岭—大别造山带南缘和北缘新生代构造演化特征基本相同,但是受多种因素控制,东秦岭—大别造山带南、北缘晚白垩世的构造演化存在较大差异。ESR测年结果与东秦岭—大别造山带南、北缘已有的地质事实相吻合,验证了ESR测年的可靠性。  相似文献   
955.
There are two plays in the Dabashan foreland tectonic belt: the upper and the lower plays. The lower play experienced one sedimentary hydrodynamic stage, two burial hydrodynamic stages, two tectonic hydrodynamic stages and two infiltration hydrodynamic stages from the Sinian to the Cenozoic, while the upper play had one sedimentary hydrodynamic stage, one burial hydrodynamic stage, two tectonic hydrodynamic stages and one infiltration hydrodynamic stage from the Permian to the Cenozoic. Extensive flows of both sedimentary water, including hydrocarbons, and deep mantle fluid occurred in the Chengkou faults during collision orogeny in the Middle-Late Triassic Indosinian orogeny, and fluid flow was complicated during intracontinental orogeny in the Middle-Late Jurassic. In addition to these movements, infiltration and movement of meteoric water took place in the Chengkou faults, whereas in the covering-strata decollement tectonic belt, extensive sedimentary water flow (including hydrocarbons) occurred mainly in the Zhenba and Pingba faults. During the stage of rapid uplift and exhumation from the Cretaceous to the Cenozoic, the fluid flow was characterized mainly by infiltration of meteoric water and gravity-induced flow caused by altitude difference, whereas sedimentary water flow caused by tectonic processes was relatively less significant. Sedimentary water flow was more significant to the lower play in hydrocarbon migration and accumulation during collision orogeny in the Middle-Late Triassic Indosinian orogeny, but its influence is relatively slight on the upper play. On one hand, hydrodynamics during intracontinental orogeny in the Middle-Late Jurassic adjusted, reformed or oven destroyed oil reservoirs in the lower play; on the other hand, it drove large amounts of hydrocarbons to migrate laterally and vertically and is favorable for hydrocarbon accumulation. Infiltration hydrodynamics mainly adjusted and destroyed oil reservoirs from the Cretaceous to the Cenozoic.  相似文献   
956.
The Fomopea granitic pluton is emplaced in gnessic and amphibolitic basement.These gneissic and amphibolitic basement rocks are represented in the pluton's body as sub-rounded,elongated or stretched xe...  相似文献   
957.
The Napo-Qinzhou Tectonic Belt (NQTB) lies at the junction of the Yangtze, Cathaysia and Indochina (North Vietnam) Blocks, which is composed of five major lithotectonic subunits: the Qinzhou-Fangcheng Suture Zone (QFSZ), the Shiwandashan Basin (SB), the Pingxiang-Nanning Suture Zone (PNSZ), the Damingshan Block (DB) and the Babu-Lingma Suture Zone (BLSZ). On the basis of geochemical compositions, the Permian mafic igneous rocks can be divided into three distinct groups: (1) mafic igneous rocks (Group 1) from the Longjing region in the PNSZ and Hurun region in the BLSZ, which are characterized by intermediate Ti, P and Zr with low Ni and Cr contents; (2) mafic igneous rocks (Group 2) from the Naxiao and Chongzuo region in the DB, characterized by low-intermediate Ti, P and Zr with high Ni and Cr concentrations; and (3) mafic igneous rocks (Group 3) from the Siming region in the Jingxi carbonate platform of the northwestern margin of the NQTB, with intermediate-high Ti, P and Zr and low Ni and Cr contents. The Group 1 rocks yield a weighted mean 206Pb/238U age of 250.5±2.8 Ma and are geochemically similar to basalts occurring in back-arc basin settings. The Group 2 rocks exhibit geochemical features to those basalts in island arcs, whereas the Group 3 rocks show geochemical similarity to that of ocean island basalts. All three groups are characterized by relatively low εNd(t) values (–2.61 to +1.10) and high initial 87Sr/86Sr isotopic ratios (0.705309–0.707434), indicating that they were derived from a subduction-modified lithospheric mantle and experienced assimilation, fractional crystallization, and crustal contamination or mixing during magmatic evolution. Accordingly, we propose the existence of an arc-back arc basin system that developed along the NQTB at the border of SW Guangxi Province (SW China) and northern Vietnam, and it was formed by continued northwestward subduction of the Cathaysian (or Yunkai) Block under the Yangtze Block, and northeastward subduction of the Indochina Block beneath the Yangtze Block during Permian time.  相似文献   
958.
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U–Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb)N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of ?8.79 to ?5.38, depleted mantle Nd model ages (TDM) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios (87Sr/86Sr)i from 0.7061 to 0.7082, indicating a possible Meso- to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher (87Sr/86Sr)i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.  相似文献   
959.
青海祁漫塔格地区航磁异常特征及找矿前景   总被引:1,自引:0,他引:1  
利用青海祁漫塔格地区1:5万高精度航磁资料,结合成矿地质背景、构造特征分析了该区航磁异常特征,并依据知矿(床)点的分布及成矿规律对祁漫塔格地区成矿带进行了划分,筛选了一批重点找矿异常,建立了以航磁异常信息为主的综合找矿标志,进而圈定了多个多金属找矿远景区段。对该区下一步矿产勘查部署提供重要依据,并为地面找矿工作提供重要的找矿线索。  相似文献   
960.
张焜  马世斌  刘丽萍 《西北地质》2012,45(1):283-292
为了查明青海省重点成矿带与矿集区矿山地质环境的现状及变化趋势,利用DEM和IKO-NOS、QUICKBIRD、WORLDVIEW-2、SPOT-5等卫星遥感解译资料对该地区的矿山地质环境进行了研究。结果表明,盐湖矿产开发占地面积最大,其次为煤矿,且煤矿区和盐湖矿区占地面积扩展迅速。矿山开发所引发的地质灾害(隐患)集中分布于煤矿开采区,主要表现为塌陷坑、地裂缝、崩塌(隐患)、泥石流(隐患)和地面塌陷区(隐患)等。环境污染主要表现为水体污染、粉尘污染和尾矿污染,而尾矿污染较为突出。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号