首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5652篇
  免费   2120篇
  国内免费   683篇
测绘学   63篇
大气科学   124篇
地球物理   3813篇
地质学   3270篇
海洋学   356篇
天文学   350篇
综合类   35篇
自然地理   444篇
  2024年   2篇
  2023年   6篇
  2022年   17篇
  2021年   96篇
  2020年   103篇
  2019年   306篇
  2018年   493篇
  2017年   531篇
  2016年   567篇
  2015年   510篇
  2014年   515篇
  2013年   845篇
  2012年   526篇
  2011年   486篇
  2010年   408篇
  2009年   320篇
  2008年   400篇
  2007年   309篇
  2006年   318篇
  2005年   293篇
  2004年   282篇
  2003年   252篇
  2002年   198篇
  2001年   177篇
  2000年   199篇
  1999年   77篇
  1998年   39篇
  1997年   50篇
  1996年   17篇
  1995年   22篇
  1994年   18篇
  1993年   16篇
  1992年   13篇
  1991年   13篇
  1990年   5篇
  1989年   4篇
  1988年   7篇
  1987年   7篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有8455条查询结果,搜索用时 159 毫秒
941.
Decision models for the verification of seismic collapse safety of buildings are introduced. The derivations are based on the concept of the acceptable (target) annual probability of collapse, whereas the decision making involves comparisons between seismic demand and capacity, which is familiar to engineering practitioners. Seismic demand, which corresponds to the design seismic action associated with a selected return period, can be expressed either in terms of an intensity measure (IM) or an engineering demand parameter (EDP). Seismic capacity, on the other hand, is defined by dividing the near‐collapse limit‐state IM or EDP by an appropriate risk‐targeted safety factor (γ im or γ edp ), which is the only safety factor used in the proposed decision model. Consequently, the seismic performance assessment of a building should be based on the best possible estimate. For a case study, it is shown that if the target collapse risk is set to 10?4 (0.5% over a period of 50 years), and if the seismic demand corresponds to a return period of 475 years (10% over a period of 50 years), then it can be demonstrated that γ im is approximately equal to 2.5 for very stiff buildings, whereas for buildings with long periods the value of γ im can increase up to a value of approximately 5. The model using γ edp is equal to that using γ im only if it can be assumed that displacements, with consideration of nonlinear behavior, are equal to displacements from linear elastic analysis.  相似文献   
942.
943.
The steel plate shear wall (SPSW) system is a robust option for earthquake resistance due to the strength, stiffness, ductility and energy dissipation that it provides. Although thin infill plates are efficient for resisting lateral loads, boundary frames that are proportioned based on capacity design requirements add significant structural weight that appears to be one of the factors limiting the use of the system in practice. An alternate configuration, the SPSW with coupling (SPSW‐WC), was explored recently as an option for increasing architectural flexibility while also improving overall system economy and seismic performance. The SPSW‐WC, which extensively employs flexural boundary frame contribution, has shown promise in analytical, numerical and experimental studies, but recent research on uncoupled SPSWs suggests that boundary frame contribution should not be considered for carrying seismic design shear. As a result, in the present study, boundary frame contribution in SPSWs was explored with detailed three‐dimensional finite element models, which were validated against large‐scale SPSW‐WC tests. Six‐story systems were considered, and the study matrix included single and double uncoupled SPSWs along with coupled SPSWs that had various degrees of coupling. Variations in design methodology were also explored. The modeling framework was employed to conduct static monotonic and cyclic pushover analyses and dynamic response history analysis. These analyses demonstrate the beneficial effect of coupling in SPSWs and illustrate the need to consider boundary frame contribution in design of coupled SPSWs. In addition, sharing design shear between the infill plate and the boundary frame is more generally shown to not be detrimental if this sharing is done in the design stage based on elastic analysis and the resulting boundary frame provides adequate secondary strength and stiffness following infill plate yielding. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
944.
In this paper, the effects of a mass damper on the rocking motion of a non‐symmetric rigid block‐like structure, subject to different seismic excitation, are investigated. The damper is modelled as a single degree of freedom oscillating mass, running at the top of the block and connected to it by a linear visco‐elastic device. The equations of rocking motion, the uplift and the impact conditions are derived. A nondimensionalisation of the governing equations is performed with the aim to obtain an extensive parametric analysis. The results are achieved by numerical integration of these equations. The slenderness and the base of the rigid block, and the eccentricity of the centre of mass are taken as variable parameters in the analyses. The main objective of the study is to check the performance of the damper versus the spectral characteristics of the seismic input. Three earthquake registrations with different frequency contents are used in the analyses. The results show that the presence of the mass damper leads to different levels of improvement of the response of the system, depending on the spectral characteristics of the seismic input. Curves providing the overturning slenderness of blocks of specific sizes versus the characteristics of the TMD are obtained. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
945.
Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of in‐stream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates with wood load; the residual volume of pools created in association with wood correlates inversely with drainage area; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but the analyses suggest that sediment volume correlates positively with drainage area and wood volume. The form of sediment storage in relation to wood appears to change downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Pool volume correlates positively with wood volume and negatively with channel gradient. Sediment volume correlates well with beaver pond area. More abundant in‐stream wood and beaver populations present historically equated to greater sediment storage within river corridors and greater residual pool volume. One implication of these changes is that protecting and re‐introducing wood and beavers can be used to restore rivers. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
946.
Elevated shorelines and lake sediments surrounding Issyk Kul, the world's second largest mountain lake, record fluctuating lake levels during Quaternary times. Together with bathymetric and geochemical data, these markers document alternating phases of lake closure and external drainage. The uppermost level of lake sediments requires a former damming of the lake's western outlet through the Boam gorge. We test previous hypothesised ice or landslide dam failures by exploring possible links between late Quaternary lake levels and outbursts. We review and recompile the chronology of reported changes in lake site, and offer new ages of abandoned shorelines using 14C in bivalve and gastropod shells, and plant detritus, as well as sand lenses in delta and river sediments using Infrared Stimulated Luminescence. Our dates are consistent with elevated lake levels between ~45 ka and 22 ka. Cosmogenic 10Be and 26Al exposure ages of fan terraces containing erratic boulders (>3 m) downstream of the gorge constrain the timing of floods to 20.5–18.5 ka, postdating a highstand of Issyk Kul. A flow‐competence analysis gives a peak discharge of >104 m3 s–1 for entraining and transporting these boulders. Palaeoflood modelling, however, shows that naturally dammed lakes unconnected to Issyk Kul could have produced such high discharges upon sudden emptying. Hence, although our data are consistent with hypotheses of catastrophic outburst floods, average lake‐level changes of up to 90 mm yr–1 in the past 150 years were highly variable without any outbursts, so that linking lake‐level drops to catastrophic dam breaks remains ambiguous using sedimentary archives alone. This constraint may readily apply to other Quaternary lakes of that size elsewhere. Nonetheless, our reconstructed Pleistocene floods are among the largest reported worldwide, and motivate further research into the palaeoflood hydrology of Central Asia. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
947.
The base of Earth's critical zone (CZ) is commonly shielded from study by many meters of overlying rock and regolith. Though deep CZ processes may seem far removed from the surface, they are vital in shaping it, preparing rock for infusion into the biosphere and breaking Earth materials down for transport across landscapes. This special issue highlights outstanding challenges and recent advances of deep CZ research in a series of articles that we introduce here in the context of relevant literature dating back to the 1500s. Building on several contributions to the special issue, we highlight four exciting new hypotheses about factors that drive deep CZ weathering and thus influence the evolution of life‐sustaining CZ architecture. These hypotheses have emerged from recently developed process‐based models of subsurface phenomena including: fracturing related to subsurface stress fields; weathering related to drainage of bedrock under hydraulic head gradients; rock damage from frost cracking due to subsurface temperature gradients; and mineral reactions with reactive fluids in subsurface chemical potential gradients. The models predict distinct patterns of subsurface weathering and CZ thickness that can be compared with observations from drilling, sampling and geophysical imaging. We synthesize the four hypotheses into an overarching conceptual model of fracturing and weathering that occurs as Earth materials are exhumed to the surface across subsurface gradients in stress, hydraulic head, temperature, and chemical potential. We conclude with a call for a coordinated measurement campaign designed to comprehensively test the four hypotheses across a range of climatic, tectonic and geologic conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
948.
Structure‐from‐Motion (SfM) photogrammetry is now used widely to study a range of earth surface processes and landforms, and is fast becoming a core tool in fluvial geomorphology. SfM photogrammetry allows extraction of topographic information and orthophotos from aerial imagery. However, one field where it is not yet widely used is that of river restoration. The characterisation of physical habitat conditions pre‐ and post‐restoration is critical for assessing project success, and SfM can be used easily and effectively for this purpose. In this paper we outline a workflow model for the application of SfM photogrammetry to collect topographic data, develop surface models and assess geomorphic change resulting from river restoration actions. We illustrate the application of the model to a river restoration project in the NW of England, to show how SfM techniques have been used to assess whether the project is achieving its geomorphic objectives. We outline the details of each stage of the workflow, which extend from preliminary decision‐making related to the establishment of a ground control network, through fish‐eye lens camera testing and calibration, to final image analysis for the creation of facies maps, the extraction of point clouds, and the development of digital elevation models (DEMs) and channel roughness maps. The workflow enabled us to confidently identify geomorphic changes occurring in the river channel over time, as well as assess spatial variation in erosion and aggradation. Critical to the assessment of change was the high number of ground control points and the application of a minimum level of detection threshold used to assess uncertainties in the topographic models. We suggest that these two things are especially important for river restoration applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
949.
This paper reports on a wind tunnel investigation of particle segregation, ripple formation and surface armouring within sand beds of systematically varied particle size distribution, from coarsely skewed to bimodal. By design, the system was closed with no external inputs of mass from an external particle feed. Particles too coarse to travel in saltation for the given range in wind speed were dyed red in order to distinguish them in optical images from finer sand particles, which could be entrained into the unidirectional airflow. A 3D laser scanner measured the changing bed topography at regular time intervals during 18 experiments involving varied combinations of wind speed and bed texture. Image classification techniques were used to investigate the coincident self‐organization of the two populations of particles, as distinguished by their colour. As soon as saltation commenced, some of the red particles segregated into thin discontinuous patches. Particle trapping and sheltering on these rough patches was strongly favoured, causing them to grow preferentially. During the earliest stages of formation, bedform growth coincided with: (i) rapid coarsening of the surface texture; and (ii) the merging of proto‐ripple ‘crests’ to generate larger rhythmic bedforms of lower frequency. Consistent with previous work, ripple size was observed to increase under stronger winds when not exceeding the threshold for entrainment of the coarse‐mode or red particles from the crest. With declining rates of mass transport and particle segregation as the bed surface armoured, and the consequent deceleration of ripple propagation through to the end of each experiment, all surfaces eventually attained a steady‐state morphometry. At saturation, the largest ripples developed on beds having the lowest initial concentration of red particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
950.
Single bed load particle impacts were experimentally investigated in supercritical open channel flow over a fixed planar bed of low relative roughness height simulating high‐gradient non‐alluvial mountain streams as well as hydraulic structures. Particle impact characteristics (impact velocity, impact angle, Stokes number, restitution and dynamic friction coefficients) were determined for a wide range of hydraulic parameters and particle properties. Particle impact velocity scaled with the particle velocity, and the vertical particle impact velocity increased with excess transport stage. Particle impact and rebound angles were low and decreased with transport stage. Analysis of the particle impacts with the bed revealed almost no viscous damping effects with high normal restitution coefficients exceeding unity. The normal and resultant Stokes numbers were high and above critical thresholds for viscous damping. These results are attributed to the coherent turbulent structures near the wall region, i.e. bursting motion with ejection and sweep events responsible for turbulence generation and particle transport. The tangential restitution coefficients were slightly below unity and the dynamic friction coefficients were lower than for alluvial bed data, revealing that only a small amount of horizontal energy was transferred to the bed. The abrasion prediction model formed by Sklar and Dietrich in 2004 was revised based on the new equations on vertical impact velocity and hop length covering various bed configurations. The abrasion coefficient kv was found to be vary around kv ~ 105 for hard materials (tensile strength ft > 1 MPa), one order of magnitude lower than the value assumed so far for Sklar and Dietrich's model. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号