首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5652篇
  免费   2120篇
  国内免费   683篇
测绘学   63篇
大气科学   124篇
地球物理   3813篇
地质学   3270篇
海洋学   356篇
天文学   350篇
综合类   35篇
自然地理   444篇
  2024年   2篇
  2023年   6篇
  2022年   17篇
  2021年   96篇
  2020年   103篇
  2019年   306篇
  2018年   493篇
  2017年   531篇
  2016年   567篇
  2015年   510篇
  2014年   515篇
  2013年   845篇
  2012年   526篇
  2011年   486篇
  2010年   408篇
  2009年   320篇
  2008年   400篇
  2007年   309篇
  2006年   318篇
  2005年   293篇
  2004年   282篇
  2003年   252篇
  2002年   198篇
  2001年   177篇
  2000年   199篇
  1999年   77篇
  1998年   39篇
  1997年   50篇
  1996年   17篇
  1995年   22篇
  1994年   18篇
  1993年   16篇
  1992年   13篇
  1991年   13篇
  1990年   5篇
  1989年   4篇
  1988年   7篇
  1987年   7篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有8455条查询结果,搜索用时 46 毫秒
681.
This paper presents a three‐dimensional energy‐based solution for the time‐dependent response of a deeply embedded and unsupported semi‐infinite tunnel of circular cross‐section. The tunnel is taken to be excavated quasi‐instantaneously from an infinite rock body that initially exhibits an isotropic stress state and that is made up of a homogeneous, isotropic and viscoelastic material. The viscoelastic behaviour is modelled by means of Burger's model, and the rock is taken to behave volumetrically linear elastic and to exhibit exclusively deviatoric creep. This viscoelastic problem is transformed into the Laplace domain, where it represents a quasi‐elastic problem. The displacement fields in the new solution are taken to be the products of independent functions that vary in the radial and longitudinal directions. The differential equations governing the displacements of the system and appropriate boundary conditions are obtained using the principle of minimum potential energy. The solutions for these governing equations in the Laplace domain are then obtained analytically and numerically using a one‐dimensional finite difference technique. The results are then transformed back into the time domain using an efficient numerical scheme. The accuracy of the new solution is comparable with that of a finite element analysis but requires much less computation effort. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
682.
As demand for water continues to escalate in the western Unites States, so does the need for accurate monitoring of the snowpack in mountainous areas. In this study, we describe a simple methodology for generating gridded‐estimates of snow water equivalency (SWE) using both surface observations of SWE and remotely sensed estimates of snow‐covered area (SCA). Multiple regression was used to quantify the relationship between physiographic variables (elevation, slope, aspect, clear‐sky solar radiation, etc.) and SWE as measured at a number of sites in a mountainous basin in south‐central Idaho (Big Wood River Basin). The elevation of the snowline, obtained from the SCA estimates, was used to constrain the predicted SWE values. The results from the analysis are encouraging and compare well to those found in previous studies, which often utilized more sophisticated spatial interpolation techniques. Cross‐validation results indicate that the spatial interpolation method produces accurate SWE estimates [mean R2 = 0·82, mean mean absolute error (MAE) = 4·34 cm, mean root mean squared error (RMSE) = 5·29 cm]. The basin examined in this study is typical of many mid‐elevation mountainous basins throughout the western United States, in terms of the distribution of topographic variables, as well as the number and characteristics of sites at which the necessary ground data are available. Thus, there is high potential for this methodology to be successfully applied to other mountainous basins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
683.
We examined mammal occurrence and variability through the Late Pleistocene vertebrate fossil deposit of Grant Hall in Victoria Fossil Cave, Naracoorte, South Australia. To determine long‐term patterns of change, we compared the composition and relative abundance trends of the assemblage with a nearby Middle Pleistocene deposit in Cathedral Cave. Total species richness did not change through the Grant Hall sequence, dated from 93 ± 8 to 70 ± 5 ka. However, species relative abundances varied between ecologically divergent species, and in some cases between species that demonstrate similar environmental preferences. For some species this variation is comparable to that recorded in Cathedral Cave. Of those showing similar trends between the two deposits, the forest inhabitant, Pseudomys fumeus, recorded an 8.6% decline through Grant Hall, coincident with a 9.7% increase in the dry heath/mallee dweller Pseudomys apodemoides. These patterns indicate that climatic transition from relatively warm, moist to cooler, drier conditions impacted some species in similar ways through climatic cycles of the past. However, the majority of the fauna demonstrated complex responses that are individual and variable through time. Statistical tests of species trends from the Grant Hall assemblage caution that large fossil samples are required to validate patterns observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
684.
685.
The estimation of sub‐daily flows from daily flood flows is important for many hydrological and hydraulic applications. Flows during flood events often vary significantly within sub‐daily time‐scales, and failure to capture the sub‐daily flood characteristic can result in an underestimation of the instantaneous flood peaks, with possible risk of design failure. It is more common to find a longer record of daily flow series (observed or modelled using daily rainfall series) than sub‐daily flow data. This paper describes a novel approach, known as the steepness index unit volume flood hydrograph approach, for disaggregating daily flood flows into sub‐daily flows that takes advantage of the strong relationship between the standardized instantaneous flood peak and the standardized daily flood hydrograph rising‐limb steepness index. The strength of this relationship, which is considerably stronger than the relationship between the standardized flood peak and the event flood volume, is shown using data from six rivers flowing into the Gippsland Lakes in southeast Australia. The results indicate that the steepness index unit volume flood hydrograph approach can be used to disaggregate modelled daily flood flows satisfactorily, but its reliability is dependent on a model's ability to simulate the standardized daily flood hydrograph rising‐limb steepness index and the event flood volume. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
686.
Random variable simulation has been applied to many applications in hydrological modelling, flood risk analysis, environmental impact assessment, etc. However, computer codes for simulation of distributions commonly used in hydrological frequency analysis are not available in most software libraries. This paper presents a frequency‐factor‐based method for random number generation of five distributions (normal, log–normal, extreme‐value type I, Pearson type III and log‐Pearson type III) commonly used in hydrological frequency analysis. The proposed method is shown to produce random numbers of desired distributions through three means of validation: (1) graphical comparison of cumulative distribution functions (CDFs) and empirical CDFs derived from generated data; (2) properties of estimated parameters; (3) type I error of goodness‐of‐fit test. An advantage of the method is that it does not require CDF inversion, and frequency factors of the five commonly used distributions involves only the standard normal deviate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
687.
The Willyama Supergroup of the Broken Hill region in southern Australia consists of supracrustal sedimentary and magmatic rocks, formed between 1810 and 1600 Ma. A statistical analysis of nearly 2000 SHRIMP U–Pb zircon spot ages, compiled from published and unpublished sources, provides evidence for three distinct tectonostratigraphic successions and four magmatic events during this interval. Succession 1 includes Redan Geophysical Zone gneisses and the lower part of the Thackaringa Group (Cues Formation). These rocks were deposited after 1810 Ma and host granite sills of the first magmatic event (1710–1700 Ma). Succession 2 includes the upper Thackaringa Group (Himalaya Formation), the Broken Hill Group and the Sundown Group and was deposited between 1710 and 1660 Ma. These rocks all contain detrital zircons from the first magmatic event (1710–1700 Ma) and in some cases from the second magmatic event (1690–1680 Ma). The second magmatic event (1690–1680 Ma) was bimodal, resulted from crustal extension, and was coeval with deposition of the Broken Hill Group and deepening of the basin. With this event a mafic sill swarm focused in the Broken Hill Domain. Mafic sills lack any trace of inheritance, unlike the granitoids that commonly contain inherited zircons typical of the supracrustal sediments. Succession 3, the Paragon Group and equivalents were deposited after 1660 Ma, but before a regional metamorphic event at 1600 Ma. Metamorphism was closely followed by inversion of the succession into a fold‐and‐thrust belt, accompanied by a fourth late to post‐orogenic magmatic event (ca 1580 Ma) characterised by granite intrusion and regional acid volcanism (the local equivalents of the Gawler Range Volcanics in South Australia).  相似文献   
688.
Multi‐scale investigations aided by the discrete element method (DEM) play a vital role for current state‐of‐the‐art research on the elementary behaviour of granular materials. Similar to laboratory tests, there are three important aspects to be considered carefully, which are the proper stress/strain definition and measurement, the application of target loading paths and the designed experiment setup, to be addressed in the present paper. Considering the volume sensitive characteristics of granular materials, in the proposed technique, the deformation of the tested specimen is controlled and measured by deformation gradient tensor involving both the undeformed configuration and the current configuration. Definitions of Biot strain and Cauchy stress are adopted. The expressions of them in terms of contact forces and particle displacements, respectively, are derived. The boundary of the tested specimen consists of rigid massless planar units. It is suggested that the representative element uses a convex polyhedral (polygonal) shape to minimize possible boundary arching effects. General loading paths are described by directly specifying the changes in the stress/strain invariants or directions. Loading can be applied in the strain‐controlled mode by specifying the translations and rotations of the boundary units, or in the stress‐controlled mode by using a servo‐control mechanism, or in the combination of the two methods to realize mixed boundary conditions. Taking the simulation results as the natural consequences originated from a complex system, virtual experiments provide particle‐scale information database to conduct multi‐scale investigations for better understanding in granular material behaviours and possible development of the constitutive theories provided the qualitative similarity between the simulation results from virtual experiments and observations on real material behaviour. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
689.
This paper proposes a numerical model for jointed rock masses within the 3‐D numerical manifold method (NMM) framework equipped with a customized contact algorithm. The strength of rock sample containing a few sets of discontinuities is first investigated. The results of models with simple geometries are compared with the available analytical solutions to verify the developed computer code, whereas models with complex geometries are simulated to better understand the fundamental behavior and failure mechanism of jointed rock mass. Furthermore, the stability of jointed rock mass in an underground excavation is studied, where rock failure process is determined by the 3‐D NMM simulation. The simulation results provide valuable guidance on excavation process design and stabilization design in rock engineering practice. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
690.
In this paper we assess two competing tectonic models for the development of the Isa Superbasin (ca 1725–1590 Ma) in the Western Fold Belt of the Mt Isa terrane. In the ‘episodic rift‐sag’ tectonic model the basin architecture is envisaged as similar to that of a Basin and Range province characterised by widespread half‐graben development. According to this model, the Isa Superbasin evolved during three stages of the Mt Isa Rift Event. Stage I involved intracontinental extension, half‐graben development, the emergence of fault scarps and tilt‐blocks, and bimodal volcanism. Stage II involved episodic rifting and sag during intervening periods of tectonic quiescence. Stage III was dominated by thermal relaxation of the lithosphere with transient episodes of extension. Sedimentation was controlled by the development of arrays of half‐grabens bounded by intrabasinal transverse or transfer faults. The competing ‘strike‐slip’ model was developed for the Gun Supersequence stratigraphic interval of the Isa Superbasin (during stage II and the beginning of stage III). According to this model, sinistral movements along north‐northeast‐orientated strike‐slip faults took place, with oblique movements along northwest‐orientated faults. This resulted in the deposition of southeast‐thickening ramp sequences with local sub‐basin depocentres forming to the west and north of north‐northeast‐ and northwest‐trending faults, respectively. It is proposed that dilation zones focused magmatism (e.g. Sybella Granite) and transfer of strike‐slip movement resulted in transient uplift along the western margin of the Mt Gordon Arch. Our analysis supports the ‘episodic rift‐sag’ model. We find that the inferred architecture for the strike‐slip model correlates poorly with the observed structural elements. Interpretation is made difficult because there has been significant modification and reorientation of fault geometry during the Isan Orogeny and these effects need to be removed before any assertion as to the basin structure is made. Strike‐slip faulting does not explain the regional‐scale pattern of basin subsidence. The ‘episodic rift‐sag’ model explains the macroscopic geometry of the Isa Superbasin and is consistent with the detailed sedimentological analysis of basin facies architecture, and the structural history and geometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号