首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1607篇
  免费   350篇
  国内免费   615篇
测绘学   12篇
大气科学   18篇
地球物理   145篇
地质学   1835篇
海洋学   415篇
天文学   4篇
综合类   83篇
自然地理   60篇
  2024年   6篇
  2023年   28篇
  2022年   55篇
  2021年   68篇
  2020年   62篇
  2019年   100篇
  2018年   81篇
  2017年   89篇
  2016年   101篇
  2015年   85篇
  2014年   123篇
  2013年   108篇
  2012年   90篇
  2011年   111篇
  2010年   99篇
  2009年   116篇
  2008年   124篇
  2007年   130篇
  2006年   128篇
  2005年   110篇
  2004年   103篇
  2003年   103篇
  2002年   82篇
  2001年   54篇
  2000年   91篇
  1999年   52篇
  1998年   60篇
  1997年   39篇
  1996年   29篇
  1995年   28篇
  1994年   27篇
  1993年   16篇
  1992年   17篇
  1991年   13篇
  1990年   10篇
  1989年   9篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1982年   1篇
  1981年   2篇
排序方式: 共有2572条查询结果,搜索用时 31 毫秒
211.
Frontal upwelling is an important phenomenon in summer in the Yellow Sea (YS) and plays an essential role in the distribution of nutrients and biological species. In this paper, a three-dimensional hydrodynamic model is applied to investigate the characteristics and influencing factors of frontal upwelling in the YS. The results show that the strength and distribution of frontal upwelling are largely dependent on the topography and bottom temperature fronts. The frontal upwelling in the YS is stronger and narrower near the eastern coast than near the western coast due to the steeper shelf slope. Moreover, external forcings, such as the meridional wind speed and air temperature in summer and the air temperature in the preceding winter and spring, have certain influences on the strength of frontal upwelling. An increase in air temperature in the previous winter and spring weakens the frontal upwelling in summer; in contrast, an increase in air temperature in summer strengthens the frontal upwelling. When the southerly wind in summer increases, the upwelling intensifies in the western YS and weakens in the eastern YS. The air temperature influences the strength of upwelling by changing the baroclinicity in the frontal region. Furthermore, the meridional wind speed in summer affects frontal upwelling via Ekman pumping.  相似文献   
212.
The Dongfang1-1 gas field (DF1-1) in the Yinggehai Basin is currently the largest offshore self-developed gas field in China and is rich in oil and gas resources. The second member of the Pliocene Yinggehai Formation (YGHF) is the main gas-producing formation and is composed of various sedimentary types; however, a clear understanding of the sedimentary types and development patterns is lacking. Here, typical lithofacies, logging facies and seismic facies types and characteristics of the YGHF are identified based on high-precision 3D seismic data combined with drilling, logging, analysis and testing data. Based on 3D seismic interpretation and attribute analysis, the origin of high-amplitude reflections is clarified, and the main types and evolution characteristics of sedimentary facies are identified. Taking gas formation upper II (IIU) as an example, the plane distribution of the delta front and bottom current channel is determined; finally, a comprehensive sedimentary model of the YGHF second member is established. This second member is a shallowly buried “bright spot” gas reservoir with weak compaction. The velocity of sandstone is slightly lower than that of mudstone, and the reflection has medium amplitude when there is no gas. The velocity of sandstone decreases considerably after gas accumulation, resulting in an increase in the wave impedance difference and high-amplitude (bright spot) reflection between sandstone and mudstone; the range of high amplitudes is consistent with that of gas-bearing traps. The distribution of gas reservoirs is obviously controlled by dome-shaped diapir structural traps, and diapir faults are channels through which natural gas from underlying Miocene source rocks can enter traps. The study area is a delta front deposit developed on a shallow sea shelf. The lithologies of the reservoir are mainly composed of very fine sand and coarse silt, and a variety of sedimentary structural types reflect a shallow sea delta environment; upward thickening funnel type, strong toothed bell type and toothed funnel type logging facies are developed. In total, 4 stages of delta front sand bodies (corresponding to progradational reflection seismic facies) derived from the Red River and Blue River in Vietnam have developed in the second member of the YGHF; these sand bodies are dated to 1.5 Ma and correspond to four gas formations. During sedimentation, many bottom current channels (corresponding to channel fill seismic facies) formed, which interacted with the superposed progradational reflections. When the provenance supply was strong in the northwest, the area was dominated by a large set of delta front deposits. In the period of relative sea level rise, surface bottom currents parallel to the coastline were dominant, and undercutting erosion was obvious, forming multistage superimposed erosion troughs. Three large bottom current channels that developed in the late sedimentary period of gas formation IIU are the most typical.  相似文献   
213.
机载激光测深技术   总被引:1,自引:0,他引:1  
首先基于海水的光学特性介绍了机载激光测深原理,然后根据国内外的研究现状介绍了机载激光测深系统的性能指标和系统构成,最后介绍了在海底地形测量、障碍物探测、近岸海洋工程建设等方面的应用。为从事机载激光测深系统研发和应用的技术人员提供相关原理和背景参考。  相似文献   
214.
215.
The Yanshiping section, which includes the Quemo Co, Buqu, Xiali, Suowa and Xueshan Formations (Yanshiping Group) exposes organic-rich Middle to Late Jurassic deposits in the Qiangtang Basin of northern Tibet. The biostratigraphic data, from bivalves, brachiopods as well as dinoflagellate cysts, define a Bajocian to Tithonian age. This study focuses on the biomarkers present in these mudstones and limestones to determine the sources, thermal maturity and depositional environment of the organic matter. Most samples show a clear dominance of short-chain (C15–C20) n-alkanes with a maximum at C19 or C19 with a secondary maximum at C23 except for the sample BP01(22)S1 where the predominant range is C22 to C26 with a maximum at C24, significant CPI and odd-to-even predominance. The hopanoids and steroids suggest that the sources of organic matter were dominated by phytoplankton, especially algae, as the primary source. Furthermore, the Pr/Ph, Pr/nC17 and Ph/nC18, with relatively low values plus high abundance of 17α(H)-hopanes, support deposition in dysoxic to reducing, relatively shallow-water depositional settings, and the presence of gammacerane indicates normal marine salinity and/or water-column stratification. All samples are fairly mature with respect to petroleum generation, a conclusion supported by maturity parameters such as C31 22S/(22S + 22R) hopanes and C29 ααα20S/(20S + 20R) steranes.  相似文献   
216.
内蒙古正镶白旗宝力根套海井田为一个新发现的全隐蔽井田,井田含煤地层为侏罗系中、下统阿拉坦合力群,是一套典型的内陆湖泊、河流、三角洲陆相含煤建造。井田为四条正断层所围限的矩形断块,含煤地层的形成严格受构造因素控制,与其所处特殊构造地理位置有关。含煤区处于隆起带的凹陷内,西北及西南为古隆起带,呈直角包围宝力根套海井田,形成有利的聚煤场所—交角构造区。井田与邻区实例对比分析表明:地台内隆起带的凹陷区聚煤的构造控煤模式是该区域的普遍成煤规律,煤易在盆地次边缘沉积,交角构造区更有利于聚煤。通过区域构造特征分析,提出了找煤方向。  相似文献   
217.
By investigating the U-Pb zircon isotope geochronology and petrogochemistry of the major magmatic rocks in Mangui area, the authors in this paper discussed the forming era, tectonic background and geological significance. A large amount of intrusive rocks and a small amount of medium-acid volcanic rocks in Early Jurassic were found in this area. U-Pb dating by LA-ICP-MS method shows that the ages are from (199±1)Ma to (184±1)Ma and the rock types can be divided into fine-medium-grained quartz diorite, medium-grained granodiorite, fine-medium-grained monzogranite, medium-fine-grained macrophenocryst monzogranite, rhyolite, dacite and andesite, which didn’t ouur in Neoprotezoic-Paleozoic period as previous researchers thought, revealing the tectonic and magmatic activities during the Early Mesozoic period. The geochemical results show that the rocks are Ⅰ-type magmatic rocks of subluminous-peraluminous high-K calc-alkaline series. The fractionation between light and heavy rare-erath elements((La/Yb)N= 3.42~32.96) and the Eu depletion degree is not complied with the evaluation from basic to acidic. The large ion lithophile element Ba is relatively rich and Rb, Sr are relatively delicient. The high field strength elements Th and U are relatively rich and Nb, Ti, Y are relatively deficient. The magma origin and tectonic setting show that quartz diorite and medium-fine-grained macrophenocryst monzogranite come from crust-mantle mixed magma, while the medium-acid volcanic rocks, granodiorite and fine-medium-grained monzogranite are from the partial melting of crustal materials, whose formation is connected with the evolution of Mongol-Okhotsk Suture Zone. The geology and geochemistry of the Early Mesozoic magmatic rocks indicate that the middle part of Mongol-Okhotsk Ocean might begin subduction at the end of the middle Triassic and close the Early Jurassic. The peak collision might take place at the Early Jurassic, not in the Late Triassic as previous thought. The Mohe over-thrust nappe system might form in the remote effect of southward extrusion during the closing process of the eastem part of Mongol-Okhotsk Ocean. The middle and eastern Mongol-Okhotsk Ocean closing age is of great importance to reveal the basin-range tectonic formation during the Middle Jurassic to the Late Cretaceous in Northeast China.  相似文献   
218.
An account is given of a Geologists’ Association meeting in the Isle of Purbeck held on 28th–30th September 2012 and the stratigraphy and structures of the rocks examined during the weekend are described. Uppermost Jurassic Stage nomenclature and recent changes to stratigraphical nomenclature in the uppermost part of the Kimmeridge Clay Formation are discussed and the conclusion reached that the long-established divisions (Members) of this Formation are both readily recognisable and have nomenclatorial priority. The recent change to the position of Pallasioides-Rotunda zonal boundary ignores the ammonite fauna and is inappropriate. For the Lulworth district the stratigraphy of the uppermost Jurassic (Portlandian) through Lower and Upper Cretaceous formations are described and their associated structures discussed. The coastal evolution of the Lulworth coast is briefly discussed.  相似文献   
219.
The Middle Jurassic Khatatba Formation acts as a hydrocarbon reservoir in the subsurface in the Western Desert, Egypt. This study, which is based on core samples from two exploration boreholes, describes the lithological and diagenetic characteristics of the Khatatba Formation sandstones. The sandstones are fine‐ to coarse‐grained, moderately to well‐sorted quartz arenites, deposited in fluvial channels and in a shallow‐marine setting. Diagenetic components include mechanical and chemical compaction, cementation (calcite, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of calcite cements and feldspar grains. The widespread occurrence of an early calcite cement suggests that the Khatatba sandstones lost a significant amount of primary porosity at an early stage of its diagenetic history. In addition to calcite, several different cements including kaolinite and syntaxial quartz overgrowth occur as pore‐filling and pore‐lining cements. Kaolinite (largely vermicular) fills pore spaces and causes reduction in the permeability of the reservoir. Based on framework grain–cement relationships, precipitation of the early calcite cement was either accompanied by or followed the development of part of the pore‐lining and pore‐filling cements. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar. Late kaolinite clay cement occurs due to dissolved feldspar and has an impact on the reservoir quality of the Khatatba sandstones. Open hydraulic fractures also generated significant secondary porosity in sandstone reservoirs, where both fractures and dissolution took place in multiple phases during late diagenetic stages. The diagenesis and sedimentary facies help control the reservoir quality of the Khatatba sandstones. Fluvial channel sandstones have the highest porosities and permeabilities, in part because of calcite cementation, which inhibited authigenic clays or was later dissolved, creating intergranular secondary porosity. Fluvial crevasse‐splay and marine sandstones have the lowest reservoir quality because of an abundance of depositional kaolinite matrix and pervasive, shallow‐burial calcite and quartz overgrowth cements, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
220.
高岭岩体位于吉林省延边地区和龙市东侧,大地构造位置上位于华北板块北缘东段,岩性主要为似斑状二长花岗岩,基质为中粒-中细粒结构。LA-ICP-MS锆石U-Pb测年结果显示,样品YH04和N-5的加权平均年龄分别为172.25±0.97Ma和170.9±0.68Ma,表明岩体侵位时代为中侏罗世。岩石地球化学特征上,高岭岩体样品具有高硅(69.60%~74.30%)、富铝(13.90%~15.80%)、富钾(3.05%~4.50%)和低镁(0.22%~0.82%)及Mg#(26~37)的特点。样品富集轻稀土元素,相对亏损重稀土元素(LREE/HREE=13~21),具有微弱的负Eu到正Eu异常(δEu=0.78~2.14),其稀土元素配分模式图与埃达克岩稀土元素配分模式图类似。高岭岩体样品富集大离子亲石元素Cs、Rb、Ba、K、Sr和高场强元素Th、U和Zr,同时亏损高场强元素Nb、Ta以及P元素。同时样品具有较低的初始87Sr/86Sr值(0.7039~0.7051)和负的εNd(t)值(-0.6~-0.3),且其t DM1和t DM2模式年龄分别为922~928Ma和984~1011Ma,表明研究区新元古代存在地壳增生事件。Sr-Nd同位素特征及岩石地球化学特征表明高岭岩体母源岩浆来源于加厚下地壳基性岩石部分熔融且受到了新元古代增生物质的影响。结合区域构造演化,中侏罗世高岭岩体侵位构造环境可能受到环太平洋构造体系和华北板块与西伯利亚板块持续碰撞的叠加影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号