首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   552篇
  免费   14篇
  国内免费   12篇
测绘学   51篇
大气科学   10篇
地球物理   22篇
地质学   57篇
海洋学   11篇
天文学   384篇
综合类   31篇
自然地理   12篇
  2023年   1篇
  2022年   7篇
  2021年   5篇
  2020年   1篇
  2019年   6篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   7篇
  2014年   11篇
  2013年   11篇
  2012年   10篇
  2011年   15篇
  2010年   12篇
  2009年   57篇
  2008年   26篇
  2007年   68篇
  2006年   56篇
  2005年   59篇
  2004年   45篇
  2003年   33篇
  2002年   29篇
  2001年   17篇
  2000年   22篇
  1999年   14篇
  1998年   27篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1980年   1篇
  1977年   1篇
  1919年   1篇
  1900年   1篇
  1897年   5篇
  1882年   1篇
  1880年   1篇
  1877年   3篇
排序方式: 共有578条查询结果,搜索用时 31 毫秒
81.
By measuring the decaying shape of the scatter-broadened pulse from the bright distant pulsar PSR J1644−4559, we probe waves scattered at relatively high angles by very small spatial scales in the interstellar plasma, which allows us to test for a wavenumber cutoff in the plasma density spectrum. Under the hypothesis that the density spectrum is due to plasma turbulence, we can thus investigate the (inner) scale at which the turbulence is dissipated. We report observations carried out with the Parkes radio telescope at 660 MHz from which we find strong evidence for an inner scale in the range 70–100 km, assuming an isotropic Kolmogorov spectrum. By identifying the inner scale with the ion inertial scale, we can also estimate the mean electron density of the scattering region to be 5–10 cm−3. This is comparable with the electron density of H  ii region G339.1−0.4, which lies in front of the pulsar, and so confirms that this region dominates the scattering. We conclude that the plasma inside the region is characterized by fully developed turbulence with an outer scale in the range 1–20 pc and an inner scale of 70–100 km. The shape of the rising edge of the pulse constrains the distribution of the strongly scattering plasma to be spread over about 20 per cent of the 4.6 kpc path from the pulsar, but with similarly high electron densities in two or more thin layers, their thicknesses can only be 10–20 pc.  相似文献   
82.
We present low-frequency observations with the Giant Metrewave Radio Telescope of three giant radio sources (GRSs: J0139+3957, J0200+4049 and J0807+7400) with relaxed diffuse lobes which show no hotspots and no evidence of jets. The largest of these three, J0200+4049, exhibits a depression in the centre of the western lobe, while J0139+3957 and J0807+7400 have been suggested earlier by Klein et al. and Lara et al., respectively, to be relic radio sources. We estimate the ages of the lobes. We also present Very Large Array observations of the core of J0807+7400, and determine the core radio spectra for all three sources. Although the radio cores suggest that the sources are currently active, we explore the possibility that the lobes in these sources are due to an earlier cycle of activity.  相似文献   
83.
We have developed a detailed stellar evolution code capable of following the simultaneous evolution of both stars in a binary system, together with their orbital properties. To demonstrate the capabilities of the code, we investigate potential progenitors for the Type IIb Supernova 1993J, which is believed to have been an interacting binary system prior to its primary exploding. We use our detailed binary stellar evolution code to model this system to determine the possible range of primary and secondary masses that could have produced the observed characteristics of this system, with particular reference to the secondary. Using the luminosities and temperatures for both stars (as determined by Maund et al.) and the remaining mass of the hydrogen envelope of the primary at the time of explosion, we find that if mass transfer is 100 per cent efficient, the observations can be reproduced by a system consisting of a  15 M  primary and a  14 M  secondary in an orbit with an initial period of 2100 days. With a mass transfer efficiency of 50 per cent, a more massive system consisting of a  17 M  primary and a  16 M  secondary in an initial orbit of 2360 days is needed. We also investigate some of the uncertainties in the evolution, including the effects of tidal interaction, convective overshooting and thermohaline mixing.  相似文献   
84.
In 2004, McLaughlin et al. discovered a phenomenon in the radio emission of PSR J0737−3039B (B) that resembles drifting subpulses. The repeat rate of the subpulses is equal to the spin frequency of PSR J0737−3039A (A); this led to the suggestion that they are caused by incidence upon B's magnetosphere of electromagnetic radiation from A. Here, we describe a geometrical model which predicts the delay of B's subpulses relative to A's radio pulses. We show that measuring these delays is equivalent to tracking A's rotation from the point of view of a hypothetical observer located near B. This has three main astrophysical applications: (i) to determine the sense of rotation of A relative to its orbital plane, (ii) to estimate where in B's magnetosphere the radio subpulses are modulated and (iii) to provide an independent estimate of the mass ratio of A and B. The latter might improve existing tests of gravitational theories using this system.  相似文献   
85.
We present observations of a new double-image gravitational lens system, ULAS J082016.1+081216, of image separation 2.3 arcsec and high (∼6) flux ratio. The system is selected from the Sloan Digital Sky Survey (SDSS) spectroscopic quasar list using new high-quality images from the UKIRT (United Kingdom Infrared Telescope) Deep Sky Survey (UKIDSS). The lensed quasar has a source redshift of 2.024, and we identify the lens galaxy as a faint red object of redshift  0.803 ± 0.001  . Three other objects from the UKIDSS survey, selected in the same way, were found not to be lens systems. Together with the earlier lens found using this method, the SDSS–UKIDSS lenses have the potential to significantly increase the number of quasar lenses found in SDSS, to extend the survey to higher flux ratios and lower separations, and to give greater completeness which is important for statistical purposes.  相似文献   
86.
We present results from modelling of quasi-simultaneous broad-band (radio through X-ray) observations of the Galactic stellar black hole (BH) transient X-ray binary (XRB) systems XTE J1118+480 and GX 339−4 using an irradiated disc + compact jet model. In addition to quantifying the physical properties of the jet, we have developed a new irradiated disc model which also constrains the geometry and temperature of the outer accretion disc by assuming a disc heated by viscous energy release and X-ray irradiation from the inner regions. For the source XTE J1118+480, which has better spectral coverage of the two in optical and near-infrared (OIR) wavelengths, we show that the entire broad-band continuum can be well described by an outflow-dominated model + an irradiated disc. The best-fitting radius of the outer edge of the disc is consistent with the Roche lobe geometry of the system, and the temperature of the outer edge of the accretion disc is similar to those found for other XRBs. Irradiation of the disc by the jet is found to be negligible for this source. For GX 339−4, the entire continuum is well described by the jet-dominated model only, with no disc component required. For the two XRBs, which have very different physical and orbital parameters and were in different accretion states during the observations, the sizes of the jet base are similar and both seem to prefer a high fraction of non-thermal electrons in the acceleration/shock region and a magnetically dominated plasma in the jet. These results, along with recent similar results from modelling other galactic XRBs and AGNs, may suggest an inherent unity in diversity in the geometric and radiative properties of compact jets from accreting black holes.  相似文献   
87.
We present Doppler and modulation tomography of the X-ray nova XTE J1118+480 with data obtained during quiescence using the 10-m Keck II telescope. The hotspot where the gas stream hits the accretion disc is seen in Hα, Hβ, He  i λ5876 and Ca  ii λ8662, thus verifying the presence of continued mass transfer within the system. The disc is clearly seen in Hα and Ca  ii λ8662. We image the mass-donor star in narrow absorption lines of Na  i  λλ5890, 5896, 8183, 8195  and Ca  ii λ8662, implying an origin from the secondary itself rather than the interstellar medium. We also detect deviations in the centroid of the double peak of Hα akin to those found by Zurita et al. suggesting disc eccentricity.  相似文献   
88.
An unusual timing and spectral state of a black hole microquasar XTE J1550-564 observed with RXTE is analyzed. Millisecond variabilities are found, which are significantly shorter than the minimum possible time scale in the light curves of black hole binaries, as suggested by Sunyaev & Revnivtsev (2000). The X-ray spectral fitting result indicates that there is an unusual soft component in the spectrum, which may be responsible for the millisecond variabilities. The millisecond variabilities as well as the unusual soft spectral component should be produced from some small, but independent active regions in the accretion disk.  相似文献   
89.
We examine the distance of the two galactic microquasars GRO J1655–40 and A 0620–00 which are potentially the two closest black holes to the Sun. We aim to provide a picture as wide and complete as possible of the problem of measuring the distance of microquasars in our Galaxy. The purpose of this work is to fairly and critically review in great detail every distance method used for these two microquasars in order to show that the distances of probably all microquasars in our Galaxy are much more uncertain than currently admitted. Moreover, we show that many confirmations of quantitative results are often entangled and rely on very uncertain measurements. We also present a new determination of the maximum distance of GRO J1655–40 using red clump giant stars, and show that it confirms our earlier result of a distance less than 2 kpc instead of 3.2 kpc. Because, it then becomes more likely that GRO J1655–40 could originate from the stellar cluster NGC 6242, located at 1.0 kpc, we review the distance estimations of A 0620–00, which is so far the closest black hole with an average distance of about 1.0 kpc. We show that the distance methods used for A 0620–00 are also problematic. Finally, we present a new analysis of spectroscopic and astrometric archival data on this microquasar, and apply the maximum distance method of Foellmi et al. [Foellmi, C., Depagne, E., Dall, T.H., Mirabel, I.F., 2006b. A&A 457, 249]. It appears that A 0620–00 could indeed be even closer to the Sun than currently estimated, and consequently would be the closest known black hole to the Sun.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号