首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1467篇
  免费   179篇
  国内免费   610篇
测绘学   33篇
大气科学   30篇
地球物理   308篇
地质学   1686篇
海洋学   97篇
天文学   14篇
综合类   19篇
自然地理   69篇
  2024年   19篇
  2023年   28篇
  2022年   52篇
  2021年   61篇
  2020年   64篇
  2019年   93篇
  2018年   87篇
  2017年   93篇
  2016年   125篇
  2015年   125篇
  2014年   137篇
  2013年   308篇
  2012年   136篇
  2011年   95篇
  2010年   75篇
  2009年   77篇
  2008年   85篇
  2007年   78篇
  2006年   70篇
  2005年   85篇
  2004年   84篇
  2003年   67篇
  2002年   61篇
  2001年   17篇
  2000年   18篇
  1999年   25篇
  1998年   14篇
  1997年   12篇
  1996年   3篇
  1995年   10篇
  1994年   5篇
  1993年   12篇
  1992年   8篇
  1991年   2篇
  1990年   6篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
排序方式: 共有2256条查询结果,搜索用时 15 毫秒
51.
Combining Lu–Hf garnet geochronology with in situ trace element analyses in garnet allowed us to gain new insight into the metamorphic evolution of UHP–UHT rocks in the Stary Gierałtów region, in the Polish Sudetes. Prograde garnet growth recorded by Rayleigh-type heavy REE (HREE) zoning in the felsic granulites indicates that the obtained 386.6 ± 4.9 Ma Lu–Hf age represents the time of garnet crystallization on a prograde UHP metamorphic path. The surrounding rocks were metamorphosed at the same time as indicated by 381.2 ± 6.7 Ma Sm–Nd garnet age obtained for the mid-crustal metapelites. The second metamorphic episode, which affected most of the lower crust in the Orlica–Śnieżnik Massif (OSM) occurred at ca. 340 Ma as determined by U–Pb zircon and Sm–Nd garnet dating of granulites in this and previous studies is interpreted as a high temperature event, which took place on a retrograde path.

Trace element distribution in garnets from the layered granulites showed significant differences in distribution of medium and HREE in garnets from mafic and felsic protoliths over the course of the metamorphic evolution. This had strong impact on the isotopic dating results and led to “decoupling” of the Sm–Nd and Lu–Hf clocks, which recorded timing of the two different metamorphic episodes separated by as much as 40 Ma. Moreover, the preservation of the HREE growth zonation profile in garnets from the felsic granulites whose minimum metamorphic temperature was established at 900 °C implies that the Lu–Hf system under relatively dry conditions does not undergo significant diffusional re-equilibration even at such extreme temperatures and therefore it sill provides the age of prograde garnet growth. Under hydrous conditions, at least some resetting will take place, as documented by the partially relaxed HREE zonation profile in the amphibolitised mafic granulite, which yielded a 10 Ma younger age. The HREE distribution study appeared to be a particularly valuable and essential tool, which allowed us to distinguish garnet growth from post-growth complexities and hence, provide improved age interpretation. Medium REE, on the other hand, did not show any obvious correlation with the isotopic signature of garnet.

Two distinct metamorphic episodes recorded in the Stary Gierałtów region show that buoyancy-driven uplift of UHP rocks can be arrested at the base of a continental crust if not supported by any additional force. In our case study, the UHP rocks would have never reached the surface if their uplift had not been resumed after a long pause under a different tectonic regime. The multistage, discontinuous uplift revealed by the UHP rocks of the OSM provides a new scenario for the exhumation of continental crust from mantle depths distinct from the fast-track exhumation histories recognized in UHP terranes elsewhere.  相似文献   

52.
Tom Andersen  William L Griffin   《Lithos》2004,73(3-4):271-288
The Storgangen orebody is a concordantly layered, sill-like body of ilmenite-rich norite, intruding anorthosites of the Rogaland Intrusive Complex (RIC), SW Norway. 17 zircon grains were separated from ca. 5 kg of sand-size flotation waste collected from the on-site repository from ilmenite mining. These zircons were analysed for major and trace elements by electron microprobe, and for U–Pb and Lu–Hf isotopes by laser ablation microprobe plasma source mass spectrometry. Eight of the zircons define a well-constrained (MSWD=0.37) concordant population with an age of 949±7 Ma, which is significantly older than the 920–930 Ma ages previously reported for zircon inclusions in orthopyroxene megacrysts from the RIC. The remaining zircons, interpreted as inherited grains, show a range of 207Pb/206Pb ages up to 1407±14 Ma, with an upper intercept age at ca. 1520 Ma. The concordant zircons have similar trace element patterns, and a mean initial Hf isotope composition of 176Hf/177Hf949 Ma=0.28223±5 (Hf=+2±2). This is similar to the Hf-isotope composition of zircons in a range of post-tectonic Sveconorwegian granites from South Norway, and slightly more radiogenic than expected for mid-Proterozoic juvenile crust. The older, inherited zircons show Lu–Hf crustal residence ages in the range 1.85–2.04 Ga. One (undated) zircon plots well within the field of Hf isotope evolution of Paleoproterozoic rocks of the Baltic Shield. These findings indicate the presence of Paleoproterozoic components in the deep crust of the Rogaland area, but do not demonstrate that such rocks, or a Sveconorwegian mantle-derived component, contributed significantly to the petrogenesis of the RIC. If the parent magma was derived from a homogeneous, lower crustal mafic granulite source, the lower crustal protolith must be at least 1.5 Ga old, and it must have an elevated Rb/Sr ratio. This component would be indistinguishable in Sr, Nd and Hf isotopes from some intermediate mixtures between Sveconorwegian mantle and Paleoprotoerzoic felsic crust, but it cannot account for the initial 143Nd/144Nd of the most primitive, late Sveconorwegian granite in the region, without the addition of mantle-derived material.  相似文献   
53.
A mineral inclusion, carbon isotope, nitrogen content, nitrogen aggregation state and morphological study of 576 microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, was conducted. Mineral inclusion data show the diamonds are largely eclogitic (64%), followed by peridotitic (25%) and ultradeep (11%). The paragenetic abundances are similar to macrodiamonds from the DO27 kimberlite (Davies, R.M., Griffin, W.L., O'Reilly, S.Y., 1999. Diamonds from the deep: pipe DO27, Slave craton, Canada. In: Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H. (Eds.), The J. B. Dawson Vol., Proc. 7th Internat. Kimberlite Conf., Red Roof Designs, Cape Town, pp. 148–155) but differ to diamonds from nearby kimberlites at Ekati (e.g., Lithos (2004); Tappert, R., Stachel, T., Harris, J.W., Brey, G.P., 2004. Mineral Inclusions in Diamonds from the Panda Kimberlite, S. P., Canada. 8th International Kimberlite Conference, extended abstracts) and Snap Lake to the south (Dokl. Earth Sci. 380 (7) (2001) 806), that are dominated by peridotitic stones.

Eclogitic diamonds with variable inclusion compositions and temperatures of formation (1040–1300 °C) crystallised at variable lithospheric depths sometimes in changing chemical environments. A large range to very 13C-depleted C-isotope compositions (δ13C=−35.8‰ to −2.2‰) and an NMORB bulk composition, calculated from trace elements in garnet and clinopyroxene inclusions, are consistent with an origin from subducted oceanic crust and sediments. Carbon isotopes in the peridotitic diamonds have mantle compositions (δ13C mode −4.0‰). Mineral inclusion compositions are largely harzburgitic. Variable temperatures of formation (garnet TNi=800–1300 °C) suggest the peridotitic diamonds originate from the shallow ultra-depleted and deeper less depleted layers of the central Slave lithosphere. Carbon isotopes (δ13C av.=−5.1‰) and mineral inclusions in the ultradeep diamonds suggest they formed in peridotitic mantle (670 km). The diamonds may have been entrained in a plume and subcreted to the base of the central Slave lithosphere.

Poorly aggregated nitrogen (IaA without platelets) in a large number of eclogitic (67%) and peridotitic (32%) diamonds, with similar nitrogen contents, indicates the diamonds were stored in the mantle at low temperatures (1060–<1100 °C) following crystallisation in the Archean. Type IaA diamonds have largely cubo-octahedral growth forms, and Type II and Type IaAB diamonds, with higher nitrogen aggregation states, mostly have octahedral morphologies. However, no correlation between these groups and their mineral inclusion compositions, C-isotopes, and N-contents rules out the possibility of unique source origins and suggests eclogitic and peridotitic diamonds experienced variable mantle thermal states. Variation in mineral inclusion chemistries in single diamonds, possible overgrowths of 13C-depleted eclogitic diamond on diamonds with peridotitic and ultradeep inclusions, and Type I ultradeep diamond with low N-aggregation is consistent with diamond growth over time in changing chemical environments.  相似文献   

54.
陕西省西乡县汉南杂岩望江山岩体辉长岩中含有丰富的锆石——从600kg辉长岩样品中分选出结晶良好、内部结构简单、成因和年龄单一、Hf同位素比值均一的锆石7g,锆石粒度多为0.2-0.3mm。分别在三个不同实验室利用三种方法对该锆石样品进行了U-Pb同位素年龄测定,获得了在误差范围内完全一致的年龄:819.8 ± 2.5 Ma(LA-ICP-MS)、821.7 ± 1.7 Ma(LA-MC-ICPMS)和822.1 ± 4.5 Ma(SHRIMP)。在国内4个权威实验室对该锆石进行了Lu-Hf同位素测定,获得了在误差范围内完全一致的176Hf/177Hf同位素比值——全部421个测试点加权平均值为0.282535 ± 0.000003(2σ)。采样点岩体规模巨大,露头良好,岩石新鲜,交通方便。该锆石样品满足作为Hf同位素测定标样的各方面的指标,可能是一个比较理想的Hf 同位素测定标样。Hf同位素测定标准物质的研制,是测定获得准确可靠的Hf同位素数据的基础,具有十分重要的实用价值和科学意义。  相似文献   
55.
The Ordovician Sierras Pampeanas, located in a continental back-arc position at the Proto-Andean margin of southwest Gondwana, experienced substantial mantle heat transfer during the Ordovician Famatina orogeny, converting Neoproterozoic and Early Cambrian metasediments to migmatites and granites. The high-grade metamorphic basement underwent intense extensional shearing during the Early and Middle Ordovician. Contemporaneously, up to 7000 m marine sediments were deposited in extensional back-arc basins covering the pre-Ordovician basement. Extensional Ordovician tectonics were more effective in mid- and lower crustal migmatites than in higher levels of the crust. At a depth of about 13 km the separating boundary between low-strain solid upper and high-strain lower migmatitic crust evolved to an intra-crustal detachment. The detachment zone varies in thickness but does not exceed about 500 m. The formation of anatectic melt at the metamorphic peak, and the resulting drop in shear strength, initiated extensional tectonics which continued along localized ductile shear zones until the migmatitic crust cooled to amphibolite facies P–T conditions. P–T–d–t data in combination with field evidence suggest significant (ca. 52%) crustal thinning below the detachment corresponding to a thinning factor of 2.1. Ductile thinning of the upper crust is estimated to be less than that of the lower crust and might range between 25% and 44%, constituting total crustal thinning factors of 1.7–2.0. While the migmatites experienced retrograde decompression during the Ordovician, rocks along and above the detachment show isobaric cooling. This suggests that the magnitude of upper crustal extension controls the amount of space created for sediments deposited at the surface. Upper crustal extension and thinning is compensated by newly deposited sediments, maintaining constant pressure at detachment level. Thinning of the migmatitic lower crust is compensated by elevation of the crust–mantle boundary. The degree of mechanical coupling between migmatitic lower and solid upper crust across the detachment zone is the main factor controlling upper crustal extension, basin formation, and sediment thickness in the back-arc basin. The initiation of crustal extension in the back-arc, however, crucially depends on the presence of anatectic melt in the middle and lower crust. Consumption of melt and cooling of the lower crust correlate with decreasing deposition rates in the sedimentary basins and decreasing rates of crustal extension.  相似文献   
56.
Numerous studies have shown that precipitation isocapes drive δD and δ18O patterns in surficial waters and in terrestrial food webs. While the GNIP (Global Network for Isotopes in Precipitation) dataset provided a key foundation for linking precipitation-terrestrial isoscapes globally, it has insufficient spatial coverage in many countries like Mexico. To overcome this limitation, we hypothesized that shallow phreatic groundwaters in Mexico could be used as an isotopic integrator of long-term seasonally weighted precipitation inputs to the landscape to aid in calibrating spatial H and O isotope datasets for terrestrial, biological and hydrological research. Groundwater was sampled from 234 sites in Mexico at ~ 50 km latitudinal spacing to obtain high spatial resolution and country-wide coverage for the construction of a groundwater isoscape. Our data revealed that shallow groundwater infiltration in Mexico appears largely unaffected by evaporation and reflects seasonally weighted precipitation inputs. These precipitation inputs are primarily biased to summertime when highest rainfall occurs, but a small degree of post-precipitation evaporation revealed a lower d-excess zone that corresponded to the interior semi-arid ecozone. We developed a predictive general linear model (GLM) for hydrogen and oxygen isotopic spatial patterns in Mexican groundwater and then compared the results to a validation subset of our field data, as well external data reported in the literature. The GLM used elevation, latitude, drainage basin (Atlantic vs. Pacific), and rainfall as the most relevant predictive variables. The GLM explained 81% of the overall isotopic variance observed in groundwater, 68% of the variance within our validation subset, and 77% of the variance in the external data set. Our predictive GLM is sufficiently accurate to allow for future ecological, hydrological and forensic isoscape applications in Mexico, and may be an approach that is applicable to other countries and regions where GNIP stations are lacking.  相似文献   
57.
土地庙沟铅锌矿床是豫西南铅锌银多金属成矿区域的重要组成部分。本文以与土地庙沟铅锌矿床成矿关系密切的栗扎树岩体为研究对象,利用LA-ICP-MS锆石U-Pb测年和Hf同位素分析方法,探讨岩体成岩时代及其与矿床成矿时空相关性。岩体测得的LA-ICP-MS锆石U-Pb年龄加权平均值分别为141.6±1.3Ma(样品YZY-G07)、135.5±1.6Ma(样品YZY-G08)、116.2±1.2Ma(样品YZY-G01),Hf同位素分析二阶段模式年龄为1724Ma~2244 Ma,表明成岩物质主要来源于地壳,并结合矿床特征,与栾川-维摩寺断裂北侧的合峪、伏牛山、太山庙相比,从早到晚,140Ma、135Ma、117Ma均有较好的对应关系。根据形成于140Ma左右的花岗岩浆活动,结合岩石地球化学、矿床地质特征、同位素特征等资料,并与华北克拉通南缘南泥湖矿田的成矿构造热事件对比,可推断出矿床为早白垩世早期同一构造-岩浆-流体成矿事件的产物,为矿山企业勘查找矿提供了科学依据。  相似文献   
58.
拉伊克勒克矿床是在第四系覆盖区新发现的隐伏斑岩铜(钼)矿床。采用LA-ICP-MS技术,对赋矿岩体英云闪长岩中的锆石和矿石中的辉钼矿分别进行锆石U-Pb同位素、Re-Os同位素和锆石Hf同位素测定及相应的研究。测得锆石U-Pb年龄为421.8±2.5Ma,辉钼矿Re-Os模式年龄为409.1±2.6Ma,表明拉伊克勒克斑岩铜(钼)矿床形成于晚志留世—早泥盆世,与琼河坝地区主要斑岩矿床大规模成矿时间一致。英云闪长岩属过铝质-钙碱性系列花岗岩类,岩体具有较高的铝钙含量,K_2O/Na_2O值普遍偏低,介于0.16~0.29之间;稀土元素配分曲线呈现右倾特征,稀土元素总量较低,轻稀土元素相对富集,负Eu异常不明显。在微量元素原始地幔标准化蛛网图上,高场强元素Th、Nb、Ta、P、Ti等相对亏损,大离子亲石元素Rb、Ba、U、K、Sr等相对富集。同时岩体具有高的正ε_(Hf)(t)值(10.98~15.01)和年轻的模式年龄(451~708Ma),暗示英云闪长岩体是大陆边缘弧环境下大洋板片熔融的产物,对进一步明确琼河坝地区斑岩型矿床的成矿环境和找矿方向具有重要意义。  相似文献   
59.
板山坪岩体是北秦岭二郎坪群中的侵入岩。为了查明该岩体的成因,对该岩体进行了锆石U-Pb年代学、锆石原位Hf同位素研究以及矿物化学分析等方面的研究。研究结果表明,板山坪岩体岩性组成主要为石英闪长岩和花岗闪长岩,花岗闪长岩内部存在暗色包体。本次研究获得板山坪石英闪长岩锆石U-Pb年龄为442.7~432.2 Ma,花岗闪长岩锆石U-Pb年龄为436.8~432.7 Ma,暗色包体锆石U-Pb年龄为437.6 Ma。锆石176Hf/177Hf值为0.282 737~0.282 736,εHf(t)值集中分布在8.4~9.4之间,二阶段Hf模式年龄(TDM2)在876~832 Ma之间。石英闪长岩结晶温压分别为673 ℃~745 ℃和0.19~0.54 GPa,花岗闪长岩结晶温压分别为657 ℃~730 ℃和0.48~0.96 GPa,暗色包体结晶温压分别为680 ℃~734 ℃和0.69~1.65 GPa。综合分析认为板山坪岩体为复式岩体,两期结晶年龄分别为496~487 Ma和442~432 Ma。岩石来源于地幔分离出来的新生下地壳。  相似文献   
60.
Ilmenite (FeTiO3) is a common accessory mineral and has been used as a powerful petrogenetic indicator in many geological settings. Elemental fractionation and matrix effects in ilmenite (CRN63E‐K) and silicate glass (NIST SRM 610) were investigated using 193 nm ArF excimer nanosecond (ns) laser and 257 nm femtosecond (fs) laser ablation systems coupled to an inductively coupled plasma‐mass spectrometer. The concentration‐normalised 57Fe and 49Ti responses in ilmenite were higher than those in NIST SRM 610 by a factor of 1.8 using fs‐LA. Compared with the 193 nm excimer laser, smaller elemental fractionation was observed using the 257 nm fs laser. When using 193 nm excimer laser ablation, the selected range of the laser energy density had a significant effect on the elemental fractionation in ilmenite. Scanning electron microscopy images of ablation craters and the morphologies of the deposited aerosol materials showed more melting effects and an enlarged particle deposition area around the ablation site of the ns‐LA‐generated crater when compared with those using fs‐LA. The ejected material around the ns crater predominantly consisted of large droplets of resolidified molten material; however, the ejected material around the fs crater consisted of agglomerates of fine particles with ‘rough' shapes. These observations are a result of the different ablation mechanisms for ns‐ and fs‐LAs. Non‐matrix‐matched calibration was applied for the analysis of ilmenite samples using NIST SRM 610 as a reference material for both 193 nm excimer LA‐ICP‐MS and fs‐LA‐ICP‐MS. Similar analytical results for most elements in ilmenite samples were obtained using both 193 nm excimer LA‐ICP‐MS at a high laser energy density of 12.7 J cm?2 and fs‐LA‐ICP‐MS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号