首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1262篇
  免费   142篇
  国内免费   348篇
测绘学   2篇
大气科学   7篇
地球物理   102篇
地质学   1555篇
海洋学   16篇
天文学   4篇
综合类   42篇
自然地理   24篇
  2024年   4篇
  2023年   11篇
  2022年   20篇
  2021年   21篇
  2020年   28篇
  2019年   42篇
  2018年   38篇
  2017年   32篇
  2016年   36篇
  2015年   38篇
  2014年   36篇
  2013年   85篇
  2012年   64篇
  2011年   49篇
  2010年   38篇
  2009年   67篇
  2008年   55篇
  2007年   83篇
  2006年   82篇
  2005年   62篇
  2004年   70篇
  2003年   65篇
  2002年   56篇
  2001年   59篇
  2000年   59篇
  1999年   66篇
  1998年   53篇
  1997年   51篇
  1996年   58篇
  1995年   62篇
  1994年   54篇
  1993年   55篇
  1992年   33篇
  1991年   20篇
  1990年   20篇
  1989年   27篇
  1988年   10篇
  1987年   12篇
  1986年   12篇
  1985年   4篇
  1984年   6篇
  1983年   8篇
  1981年   1篇
排序方式: 共有1752条查询结果,搜索用时 156 毫秒
411.
The San Emigdio and related Pelona, Orocopia, Rand and Sierra de Salinas schists of southern California were underplated beneath the southern Sierra Nevada batholith and adjacent southern California batholith along a shallow segment of the subducting Farallon plate in Late Cretaceous to early Tertiary time. These subduction accretion assemblages represent a regional, deeply exhumed, shallowly dipping domain from an ancient slab segmentation system and record the complete life cycle of the segmentation process from initial flattening and compression to final extensional collapse. An important unresolved question regarding shallow subduction zones concerns how the thermal structure evolves during the slab flattening process. New field relationships, thermobarometry, thermodynamic modelling and garnet diffusion modelling are presented that speak to this issue and elucidate the tectonics of underplating and exhumation of the San Emigdio Schist. We document an upsection increase in peak temperature (i.e. inverted metamorphism), from 590 to 700 °C, peak pressures ranging from 8.5 to 11.1 kbar, limited partial melting, microstructural evidence for large seismic events, rapid cooling (825–380 °C Myr?1) from peak conditions and an ‘out and back’P–T path. While inverted metamorphism is a characteristic feature of southern California schists, the presence of partial melt and high temperatures (>650 °C) are restricted to exposures with maximum depositional ages between 80 and 90 Ma. Progressive cooling and tectonic underplating beneath an initially hot upper plate following the onset of shallow subduction provide a working hypothesis explaining high temperatures and partial melting in San Emigdio and Sierra de Salinas schists, inverted metamorphism in the schist as a whole, and the observed P–T trajectory calculated from the San Emigdio body. Lower temperatures in Pelona, Orocopia and Rand schists are likewise explained in the context of this overarching model. These results are consistent with an inferred tectonic evolution from shallow subduction beneath the then recently active Late Cretaceous arc to exhumation by rapid trench‐directed channelized extrusion in the subducted schist.  相似文献   
412.
Gneiss domes are commonly cored by quartzofeldspathic rocks that provide little information about the pressure–temperature–fluid history of the domes. Three northern Cordilleran migmatite domes (Thor‐Odin and Valhalla/Passmore, British Columbia, Canada; Okanogan, Washington, USA), however, contain Mg–Al‐rich orthoamphibole‐cordierite gneiss as layers and lenses that record metamorphic conditions and pressure–temperature (PT) path information not preserved in the host migmatite. These Mg–Al‐rich rocks are therefore a valuable archive of metamorphic conditions during dome evolution, although refractory rocks such as these commonly contain reaction textures that may complicate the calculation of metamorphic conditions. In the Okanogan dome, Mg–Al‐rich layers are part of the Tunk Creek unit, which occurs at the periphery of an underlying migmatite domain. Bulk compositional layers (mm‐ to m‐scale) consist of gedrite‐dominated, hornblende‐dominated and biotite‐bearing layers that contain variable amounts of gedrite, hornblende, anorthite, cordierite, spinel, sapphirine, corundum, kyanite, biotite and/or staurolite. The presence of different compositional layers (some with reaction textures, some without) allows systematic analysis of metamorphic history by a combined petrographic and phase equilibrium analysis. Gedrite‐dominated layers containing relict kyanite preserve evidence of the highest‐P conditions; symplectitic and coronal reaction textures around kyanite indicate decompression at high temperature. Gedrite‐dominated layers lacking these reaction textures contain layers of sapphirine and spinel in apparent textural equilibrium and record a later high‐T–low‐P part of the path. Phase equilibria (pseudosection) analysis for layers that lack reaction textures indicates metamorphic conditions of 720–750 °C at a range of pressures (>8 to <4 kbar) following decompression. Elevated crustal temperatures and concordant structural fabrics in the Tunk Creek unit and underlying migmatite domain suggest that the calculated PT conditions recorded in Tunk Creek rocks were coeval with anatexis, extension, and dome formation in Palaeocene–Eocene time. In contrast to orthoamphibole‐cordierite gneiss in the other Cordilleran domes, the Tunk Creek unit occurs as a discontinuous km‐scale layer rather than as smaller (m‐scale) pods, is more calcic, and lacks garnet. In addition, kyanite did not transform to sillimanite, and spinel commonly occurs as a blocky matrix phase in addition to vermicules in symplectite. These differences, along with the compositional layering, allow an analysis of bulk composition v. tectonic (PT path) controls on mineral assemblages and textures. Pseudosection modelling of different layers in the Tunk Creek unit provides a basis for understanding the metamorphic history of these texturally complex, refractory rocks and their host gneiss domes, and other such rocks in similar tectonic settings.  相似文献   
413.
Exsolution lamellae of pyroxene in garnet (grt), coesite in titanite and omphacite from UHPM terranes are widely accepted as products of decompression. However, interpretation of oriented lamellae of phyllosilicates, framework silicates and oxides as a product of decompression of pyroxene is very often under debate. Results are presented here of FIB‐TEM, FEG‐EMP and synchrotron‐assisted infrared (IR) spectroscopy studies of phlogopite (Phlog) and phlogopite + quartz (Qtz) lamellae in diamond‐bearing clinopyroxene (Cpx) from ultra‐high pressure (UHP) marble. These techniques allowed collection of three‐dimensional information from the grain boundaries of both the single (phlogopite), two‐phase lamellae (phlogopite + quartz), and fluid inclusions inside of diamond included in K‐rich Cpx and understanding their relationships and mechanisms of formation. The Cpx grains contain in their cores lamellae‐I, which are represented by topotactically oriented extremely thin lamellae of phlogopite (that generally are two units cell wide but locally can be seen to be somewhat broader) and microdiamond. The core composition is: (Ca0.94K0.04Na0.02) (Al0.06Fe0.08Mg0.88) (Si1.98Al0.02)O6.00. Fluid inclusions rich in K and Si are recognized in the core of the Cpx, having no visible connections to the lamellae‐I. Lamellar‐II inclusions consist of micron‐size single laths of phlogopite and lens‐like quartz or slightly elongated phlogopite + quartz intergrowths; all are situated in the rim zone of the Cpx. The composition of the rim is (Ca0.95Fe0.03Na0.02) (Al0.05Fe0.05Mg0.90)Si2O6, and the rim contains more Ca, Mg then the core, with no K there. Such chemical tests support our microstructural observations and conclusion that the phlogopite lamellae‐I are exsolved from the K‐rich Cpx‐precursor during decompression. It is assumed that Cpx‐precursor was also enriched in H2O, because diamond included in the core of this Cpx contains fluid inclusions. The synchrotron IR spectra of such diamond record the presence of OH? stretching and H2O bending motion regions. Lamellar‐II inclusions are interpreted as forming partly because of modification of the lamellae‐I in the presence of fluid enriched in K, Fe and Si during deformation of the host diopside; the latter is probably related to the shallower stage of exhumation of the UHP marble. This study emphasizes that in each case to understand the mechanism of lamellar inclusion formation more detailed studies are needed combining both compositional, structural and three‐dimensional textural features of lamellar inclusions and their host.  相似文献   
414.
This paper reports an occurrence of medium-pressure granulite facies calc-silicate rocks intercalated with pelitic gneisses in the Higo metamorphic terrane, central Kyushu, Japan, which is classified as a low- P /high- T (andalusite-sillimanite type) metamorphic belt. Three equilibrium stages are recognized in the calc-silicate rock based on reaction textures: M1 stage characterized by an assemblage of porphyroblastic garnet + coarse-grained clinopyroxene + plagioclase included in the clinopyroxene; M2 stage by two kinds of breakdown products of garnet, one is plagioclase + coronitic clinopyroxene within garnet and the other is plagioclase + vermicular clinopyroxene surrounding garnet; and M3 stage by amphibole replacing clinopyroxene. The key assemblage in the calc-silicate rock common to M1 and M2 stages is Grt + Cpx + Pl ± Qtz, which constrains the pressure and temperature ( P – T ) conditions for these stages by Fe–Mg exchange reaction and the two univariant net-transfer reactions: 2Grs + Alm + 3Qtz = 3Hd + 3An or 2Grs + Prp + 3Qtz = 3Di + 3An. The P – T conditions for M1 and M2 stages were estimated to be about 8.4 ± 1.9 kbar and 680 ± 122 °C, and 6.7 ± 1.9 to 8.9 ± 2.2 kbar and 700 ± 130 to 820 ± 160 °C, respectively. Estimates are consistent with an isobaric heating P – T path. The high peak temperature conditions at normal crustal depths and the prograde isobaric heating path probably require heat advection due to melt migration during the high- T metamorphism.  相似文献   
415.
Schists from the foothills of the Central Sierra Nevada contain one dominant matrix foliation and yet four phases of growth of both cordierite and andalusite porphyroblasts can be distinguished. These occurred early during four separate deformation events that formed successive steep and shallow foliations. A fifth deformation event pre-dates the growth of all porphyroblasts studied. The multiple phases of porphyroblast growth allow correlation of structures across and along the region. A repeated pattern of deformation, in terms of the curvature of earlier foliations against the overprinting one, allows samples containing porphyroblasts with simpler inclusion trail geometries to be interpreted with confidence. The large-scale fold structures in this region formed before or during the second of the five deformation events recorded by the porphyroblasts. However, the matrix foliation is predominantly a product of the fourth deformation, which has commonly reactivated or re-used older foliations, and is dominated by east-side-up shear. The intervening third deformation produced locally intense foliations and was accompanied by top-to-the-east shear. The very weak fifth deformation produced weak crenulations with subhorizontal axial planes and was coaxial. Multiple phases of episodic but synchronous growth of cordierite and andalusite were produced by the KFMASH univariant equilibrium Ms+Chl+Qtz=And+Crd+Bt+H2O. The rocks crossed this reaction at a pressure just below the intersection with the KFMASH divariant equilibrium Ms+Chl+Qtz=Crd+Bt+H2O; the latter being overstepped in favour of the former as there is no evidence for cordierite growth prior to andalusite in these rocks. Subsequent multiple episodes of synchronous growth of cordierite and andalusite indicate that the possible variation in P–T during subsequent deformations was not large. This requires the high-amplitude macroscopic fold to form prior to porphyroblast growth and then be simply tightened and modified by the younger deformations.  相似文献   
416.
关于变质深熔作用与成岩成矿关系的思考   总被引:6,自引:0,他引:6  
李兆麟 《地学前缘》2001,8(3):29-38
变质作用与地壳形成演化过程密切伴生 ,并与成岩、成矿作用具密切关系。从动力学系统分析 ,区域变质作用混合岩化作用变质深熔作用是温压递进性变质作用。变质深熔作用是变质过程一个重要组成部分 ,它具有独特的温压、热力学、动力学及地球化学特性 ,文中定义为变质深熔系统 ,简称MAS ,它是由物质来源、能量来源、作用形式 ,物质转移与富集 ,形成时间与位置等要素组成。文中列举与变质深熔作用有关的花岗质岩石及矿床实例 ,并据MAS要素分析其成岩、成矿机制 ,剖析了哀牢山变质带、云开变质带花岗质岩石属变质深熔成因 ,变质带中伟晶岩矿床、剪切带金矿床形成与变质深熔作用具密切关系。当前国际上十分重视在矿床形成和物质转移中的变质作用研究 ,因此深入开展变质深熔作用与成岩、成矿关系研究具重要理论和实践指导意义。  相似文献   
417.
两广交界地区花岗岩中包体的类型,特征与成因   总被引:4,自引:0,他引:4  
庞保成 《矿物岩石》2001,21(1):8-13
据包体岩相学及矿物学研究,包体岩石为角闪岩相到麻粒岩相的副变质岩,岩石类型有麻粒岩,变粒岩,片麻岩和富云包体,角闪岩相包体形成的温度为633度,压力为460Mpa-550MPa,麻粒岩包体形成的温度为781-883度,压力为530MPa-710MPa,包体为部分熔融形成寄主花岗岩岩浆的源区岩石列余,其中大容-十万大山地区角闪岩相- 麻粒岩相包体岩石为区域动热变质成因;云开大山地区麻粒岩包体岩石为热穹隆变质成因。  相似文献   
418.
湖南连云山剪切重熔型花岗岩的野外构造岩相分带   总被引:1,自引:0,他引:1  
湖南连云山扁透镜状花岗岩侵位于长寿街—双牌走滑断裂带内。野外地质剖面观测结果表明 ,该岩区存在如下连续过渡的构造岩相分带 :未卷入断裂变形变质的冷家溪群 (围岩 )→含石榴子石云母石英构造片岩→混合岩化石英云母片岩→条带状、肠状混合岩夹透镜状花岗质小块岩→片麻状、块状黑云二长花岗岩 (主体 )。区域地质构造解析结果表明 ,连云山花岗岩与晚三叠世—侏罗纪 NNE向会聚走滑断层动热变质—剪切重熔型岩浆作用有关。  相似文献   
419.
本文简要介绍了在攀枝花1:5万区域地质调查中有关地层、沉积相、岩浆岩、变质岩、构造、矿产等方面所取得的一些进展和对一些岩石地层单位的时代归属和界线位置的修定结果。  相似文献   
420.
J. Liu  J. G. Liou 《Island Arc》1995,4(4):334-346
Abstract Kyanite-anthophyllite schist preserves the first record of high pressure in the amphibolite-facies unit of the SW Dabie Mountains, whereas ultrahigh- and high-pressure (UHP and HP) metamorphism has been well documented by the occurrence of coesite, diamond and mafic eclogite in the SE Dabie Mountains. Textural evidence indicates that minerals of the kyanite-anthophyllite schist formed mainly in two stages: (i) garnet + kyanite + antho-phyllite + rutile formed at pressure in excess of 1.2 GPa at T < 650°C; (ii) cordierite±staurolite formed by reaction of anthophyllite + kyanite at P < 0.5 GPa, T∼530°C. Plagioclase and ilmenite replaced garnet and rutile respectively during decompression. In a still later stage, secondary biotite recrystallized, accompanied by sillimanite replacing kyanite, and spinel replacing staurolite. The P-T information suggests that the amphibolite unit in the SW Dabie Mountains is part of the Triassic collision belt between the Sino-Korean and Yangtze cratons. The P-T paths of the UHP eclogite in the eastern Dabie Mountains and the HP kyanite-anthophyllite schist in the SW Dabie Mountains show similar decompression and equivalent late stage Barrovian-style metamorphism. Emplacement of voluminous granitoid at middle crustal levels between 134–118 Ma contributed to the development of the Barrovian-type metamorphism in the Dabie Mountains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号