首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1025篇
  免费   181篇
  国内免费   387篇
测绘学   3篇
大气科学   4篇
地球物理   320篇
地质学   1009篇
海洋学   62篇
天文学   1篇
综合类   18篇
自然地理   176篇
  2024年   6篇
  2023年   21篇
  2022年   47篇
  2021年   64篇
  2020年   59篇
  2019年   58篇
  2018年   69篇
  2017年   61篇
  2016年   50篇
  2015年   56篇
  2014年   40篇
  2013年   58篇
  2012年   75篇
  2011年   40篇
  2010年   45篇
  2009年   65篇
  2008年   54篇
  2007年   79篇
  2006年   70篇
  2005年   52篇
  2004年   71篇
  2003年   57篇
  2002年   47篇
  2001年   38篇
  2000年   38篇
  1999年   33篇
  1998年   30篇
  1997年   35篇
  1996年   35篇
  1995年   24篇
  1994年   23篇
  1993年   25篇
  1992年   18篇
  1991年   10篇
  1990年   9篇
  1989年   9篇
  1988年   15篇
  1987年   1篇
  1986年   5篇
  1983年   1篇
排序方式: 共有1593条查询结果,搜索用时 31 毫秒
41.
Swarms of mafic-intermediate volcaniclastic bodies occur in the Minggang region of Henan Province, a tectonic boundary between the North Qinling and the North China Block, and emplaced at (178.31±3.77) Ma. These volcanic rocks are subalkaline basaltic andesites and contain abundance of lower crust and mantle xenoliths. Thus this area is an ideal place to reveal the lithospheric composition and structure beneath the northern margin of the Qinling orogenic belt. Geochemical data indicate that these mafic granulites, eclogites and metagabbros have trace elemental and Pb isotopic characteristics very similar to those rocks from the South Qinling Block, representing the lower part of lower crust of the South Qinling which subducted beneath the North China Block. Talcic peridotites represent the overlying mantle wedge materials of the North China Block, which underwent the metasomatism of the acidic melt/fluid released from the underlying lower crust of the South Qinling Block. Deep tectonic model proposed i  相似文献   
42.
Being a composite collisional orogen between North China and South China blocks, the Qinling orogenic belt is the key to understand the composite combination, prolonged evolutionary history and their continental dynamics. The main suture between north and south Qinling, called Shangdan suture zone (SDSZ), had been studied in detail for about twenty years. Recently, another suture zone, called Mianl黣 suture zone (MLSZ), has been identified in the Qinling Mountains. It is characterized b…  相似文献   
43.
44.
45.
46.
We present 39Ar–40Ar dating of phengite, muscovite and paragonite from a set of mafic and metasedimentary rocks sampled from the high-pressure (HP) metaophiolites of the Voltri Group (Western Alps) and from clasts in the basal layer conglomerates from the Tertiary molasse which overlie the high-pressure basement. The white mica-bearing rocks display peak eclogitic and blueschist-facies parageneses, locally showing complex greenschist-facies replacement textures. The internal discordance of age spectra is proportional to the chemical complexity of the micas. High-Si phengites from eclogite clasts record a 39Ar–40Ar age of ca. 49 Ma for the eclogite stage and ca. 43 Ma for the blueschist retrogression; phengites from a blueschist basement sample yield an age of ca. 40 Ma; low-Si muscovite from a metasediment dates the formation of the greenschist paragenesis at ca. 33 Ma. Our data indicate that the analyzed samples reached high-pressure conditions at different times over a time-span of c.a. 10 Ma. Subduction was continuing during exhumation and blueschist retrograde re-equilibration of higher-pressure, eclogite-facies rocks. This process kept the isotherms depressed, allowing the older HP-rocks to escape thermal re-equilibration. Our results, added to literature data, fit a tectonic model of a subduction–exhumation cycle, with different tectonic slices subducted at different times from Early Eocene until the Eocene–Oligocene boundary.  相似文献   
47.
Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision,especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrnsting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.  相似文献   
48.
49.
The kinematic evolution of the Barinas–Apure Basin and the southern Mérida Andes from Lower Miocene to the Present is numerically modelled using flexural isostatic theory and geophysical and geological data. Two published regional transects are used to build up a reference section, which is then used to constrain important parameters (e.g. shortenings and sedimentary thicknesses) for the flexural modelling. To control the location of the main fault system in the flexural model earthquake information is also used. The estimated flexural elastic thickness of the South American lithosphere beneath the Barinas–Apure Basin and the Mérida Andes Range is 25 km. The value for the final total shortening is 60 km. The flexural isostatic model shows that the Andean uplift has caused the South American lithosphere subsidence and the development of the Barinas–Apure Basin.In addition, gravity modelling was used to understand deep crustal features that could not be predicted by flexural theory. Consequently, the best-fit flexural model is used to build a gravity model across the Mérida Andes and the Barinas–Apure Basin preserving the best-controlled structural features from the flexural modelling (e.g. basin wavelength and depth) and slightly changing the main bodies density values and deep crustal structures. The final gravity model is intended to be representative of the major features affecting the gravity field in the study area. The predicted morphology in the lower crustal level of the final gravity model favours the hypothesis of a present delamination or megathrust of the Maracaibo crust over the South American Shield. This process would use the Conrad discontinuity as a main detachment surface within an incipient NW dipping continental subduction.  相似文献   
50.
Post-collisional magmatism in the southern Iberian and northwesternAfrican continental margins contains important clues for theunderstanding of a possible causal connection between movementsin the Earth's upper mantle, the uplift of continental lithosphereand the origin of circum-Mediterranean igneous activity. Systematicgeochemical and geochronological studies (major and trace element,Sr–Nd–Pb-isotope analysis and laser 40Ar/39Ar-agedating) on igneous rocks provide constraints for understandingthe post-collisional history of the southern Iberian and northwesternAfrican continental margins. Two groups of magmatic rocks canbe distinguished: (1) an Upper Miocene to Lower Pliocene (8·2–4·8Ma), Si–K-rich group including high-K (calc-alkaline)and shoshonitic series rocks; (2) an Upper Miocene to Pleistocene(6·3–0·65 Ma), Si-poor, Na-rich group includingbasanites and alkali basalts to hawaiites and tephrites. Maficsamples from the Si–K-rich group generally show geochemicalaffinities with volcanic rocks from active subduction zones(e.g. Izu–Bonin and Aeolian island arcs), whereas maficsamples from the Si-poor, Na-rich group are geochemically similarto lavas found in intraplate volcanic settings derived fromsub-lithospheric mantle sources (e.g. Canary Islands). The transitionfrom Si-rich (subduction-related) to Si-poor (intraplate-type)magmatism between 6·3 Ma (first alkali basalt) and 4·8Ma (latest shoshonite) can be observed both on a regional scaleand in individual volcanic systems. Si–K-rich and Si-poorigneous rocks from the continental margins of southern Iberiaand northwestern Africa are, respectively, proposed to havebeen derived from metasomatized subcontinental lithosphere andsub-lithospheric mantle that was contaminated with plume material.A three-dimensional geodynamic model for the westernmost Mediterraneanis presented in which subduction of oceanic lithosphere is inferredto have caused continental-edge delamination of subcontinentallithosphere associated with upwelling of plume-contaminatedsub-lithospheric mantle and lithospheric uplift. This processmay operate worldwide in areas where subduction-related andintraplate-type magmatism are spatially and temporally associated. KEY WORDS: post-collisional magmatism; Mediterranean-style back-arc basins; subduction; delamination; uplift of marine gateways  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号