首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3789篇
  免费   851篇
  国内免费   1232篇
测绘学   166篇
大气科学   1638篇
地球物理   1106篇
地质学   886篇
海洋学   937篇
天文学   58篇
综合类   298篇
自然地理   783篇
  2024年   17篇
  2023年   49篇
  2022年   145篇
  2021年   161篇
  2020年   190篇
  2019年   223篇
  2018年   183篇
  2017年   215篇
  2016年   182篇
  2015年   220篇
  2014年   270篇
  2013年   258篇
  2012年   282篇
  2011年   262篇
  2010年   202篇
  2009年   245篇
  2008年   224篇
  2007年   280篇
  2006年   311篇
  2005年   274篇
  2004年   228篇
  2003年   193篇
  2002年   151篇
  2001年   140篇
  2000年   135篇
  1999年   115篇
  1998年   126篇
  1997年   103篇
  1996年   83篇
  1995年   69篇
  1994年   69篇
  1993年   66篇
  1992年   51篇
  1991年   45篇
  1990年   21篇
  1989年   14篇
  1988年   20篇
  1987年   15篇
  1986年   9篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1954年   3篇
排序方式: 共有5872条查询结果,搜索用时 31 毫秒
141.
Sampling and testing are conducted on groundwater depth and vegetation coverage in the 670 km2 of the Sangong River Basin and semi-variance function analysis is made afterwards on the data obtained by the application of geo-statistics. Results showed that the variance curve of the groundwater depth and vegetation coverage displays an exponential model. Analysis of sampling data in 2003 indicates that the groundwater depth and vegetation coverage change similarly in space in this area. The Sangong River Basin is composed of upper oasis, middle ecotone and lower sand dune. In oasis and ecotone, influenced by irrigation of the adjoining oasis, groundwater level has been raised and soil water content also increased compared with sand dune nearby, vegetation developed well. But in the lower reaches of the Sangong River Basin, because of descending of groundwater level, soil water content decreased and vegetation degenerated. From oasis to abandoned land and desert grassland, vegetation coverage and groundwater level changed greatly with significant difference respectively in spatial variation. Distinct but similar spatial variability exists among the groundwater depth and vegetation coverage in the study area, namely, the vegetation coverage decreasing (increasing) as the groundwater depth increases (decreases). This illustrates the great dependence of vegetation coverage on groundwater depth in arid regions and further implies that among the great number of factors affecting vegetation coverage in arid regions, groundwater depth turns out to be the most determinant one.  相似文献   
142.
The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia, The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However,the opposite interdecadal variation was found in the rainfall anomaly in North China and South China.The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.  相似文献   
143.
The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist in the westerly jet intensity and location in different regions and seasons due to the ocean-land distribution and seasonal thermal contrast, as well as the dynamic and thermodynamic impacts of the Tibetan Plateau. In winter, the EAWJ center is situated over the western Pacific Ocean and the intensity is reduced gradually from east to west over the East Asian region. In summer, the EAWJ center is located over the north of the Tibetan Plateau and the jet intensity is reduced evidently compared with that in winter. The EAWJ seasonal evolution is characterized by the obvious longitudinal inconsistency of the northward migration and in-phase southward retreat of the EAWJ axis. A good correspondence between the seasonal variations of EAWJ and the meridional differences of air temperature (MDT) in the mid-upper troposphere demonstrates that the MDT is the basic reason for the seasonal variation of EAWJ. Correlation analyses indicate that the Kuroshio Current region to the south of Japan and the Tibetan Plateau are the key areas for the variations of the EAWJ intensities in winter and in summer, respectively. The strong sensible and latent heating in the Kuroshio Current region is closely related to the intensification of EAWJ in winter. In summer, strong sensible heating in the Tibetan Plateau corresponds to the EAWJ strengthening and southward shift, while the weak sensible heating in the Tibetan Plateau is consistent with the EAWJ weakening and northward migration.  相似文献   
144.
1. Introduction It is well-known that the state of ocean plays very important role in the climate change. But there is a paucity of the ocean observation data. The data distri- bution in the space, time and different components is very inhomogeneous, even in some areas, there are no any observation data. Hence, it brings some diffcul- ties to the scientists to study many problems relevant to ocean. This situation has been being changed since ARGO (Array for Real-time Geostrophic Oceanogra-…  相似文献   
145.
Total electron content (TEC) and foF2 ionosonde data obtained at Tucumán (26.9°S; 65.4°W) from April 1982 to March 1983 (high solar activity period) are analyzed to show the seasonal variation of TEC, NmF2 (proportional to square of foF2) and the equivalent slab thickness EST. Bimonthly averages of the monthly median for January–February, April–May, July–August and October–November have been considered to represent summer, autumn, winter and spring seasons, respectively. The results show that the higher values of TEC and maximum electron density of F2-layer NmF2 are observed during the equinoxes (semiannual anomaly). During daytime, both in TEC and in NmF2 the seasonal or winter anomaly can be seen. At nighttime, this effect is not observed. Also, the observed NmF2 values are used to check the validity of International Reference Ionosphere (IRI) to predict the seasonal variability of this parameter. In general, it is found that averaged monthly medians (obtained with the IRI model) overestimate averaged monthly median data for some hours of the day and underestimate for the other hours.  相似文献   
146.
Direct measurements of the Earth's magnetic field in Italy since 1640 a.d. have been used to check the remanence directions derived from historically dated volcanic rocks of Etna and Vesuvius. Direct measurements consist of the records of L’Aquila and Pola geomagnetic observatories, the repeat stations of the Italian Magnetic Network and the data base of the Historical Italian Geomagnetic Data Catalogue. All have been relocated to the same reference site (Viterbo — lat. 42.45°N, long. 12.03°E) in order to draw a reference secular variation (SV) curve. The direction of the Earth's field at Viterbo has also been calculated from the historical records (2000-1600) of ref. [Jackson, A., Jonkers, A.R.T., Walker, M.R., 2000. Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. London, Ser. A 358, 957-990] database. The remanence directions from Etna show a general agreement with the trend of the SV curve, although their inclination is usually lower than that from the direct measurement. The directions from Vesuvius are more scattered. Large discrepancies occur at both volcanoes and in some cases have been ascribed in the literature to poor geographic information, making it difficult to identify the flows actually emplaced during the eruptions reported in the chronicles. Closer examination shows that the great majority of the best-defined remanence directions (semi-angle of confidence α95 < 2.5°) deviate significantly from the geomagnetic direction measured at the time of the emplacement, the angle between the two directions being larger than the α95 value. The value of 2.5-3.0° can thus be regarded as a conservative evaluation of the error when dealing with dating Etna and Vesuvius lava flows older than 17th century, even when the accuracy attained in remanence measurements is higher. In default of a SV curve for Italy derived from archaeological artefacts, a further error in dating is introduced when reference is made to SV curves of other countries, even if well-established, as these are from regions too far from Italy (>600 km) to confidently relocate magnetic directions.  相似文献   
147.
Satellite-data allows the magnetic field produced by the dynamo within the Earth’s core to be imaged with much more accuracy than previously possible with only ground-based data. Changes in this magnetic field can in turn be used to make some inferences about the core surface flow responsible for them. In this paper, we investigate the improvement brought to core flow computation by new satellite-data based core magnetic field models. It is shown that the main limitation now encountered is no longer the (now high) accuracy of those models, but the “non-modelled secular variation” produced by interaction of the non-resolvable small scales of the core flow with the core field, and by interaction of the (partly) resolvable large scales of the core flow with the small scales of the core field unfortunately masked by the crustal field. We show how this non-modelled secular variation can be taken into account to recover the largest scales of the core flow in a consistent way. We also investigate the uncertainties this introduces in core flows computed with the help of the frozen-flux and tangentially geostrophic assumptions. It turns out that flows with much more medium and small scales than previously thought are needed to explain the satellite-data-based core magnetic field models. It also turns out that a significant fraction of this flow unfortunately happens to be non-recoverable (being either “non-resolvable” because too small-scale, or “invisible”, because in the kernel of the inverse method) even though it produces the detectable “non-modelled secular variation”. Applying this to the Magsat (1980) to Ørsted (2000) field changes leads us to conclude that a flow involving at least strong retrograde vortices below the Atlantic Hemisphere, some less-resolved prograde vortices below the Pacific Hemisphere, and some poorly resolved (and partly non-resolvable) polar vortices, is needed to explain the 1980-2000 satellite-era average secular variation. The characteristics of the fraction of the secular variation left unexplained by this flow are also discussed.  相似文献   
148.
The concentration of nutrients in groundwater acts as an indicator to identify the influence of agricultural activities on the shallow subsurface environment. Hence, the present study was carried out to assess nutrient concentration (nitrate, phosphate and potassium) and understand its spatial and seasonal variations in the groundwater of Palar and Cheyyar River basin, Tamil Nadu, India. The groundwater samples collected from 43 wells were analyzed for nutrients once a month from January 1998 to June 1999. Results of the study suggested that agricultural activities, including application of fertilizers, soil mineralization processes and irrigation return flow, are major processes regulating the nutrients chemistry in the groundwater of this region. Groundwater in the sedimentary formation has comparatively higher concentration of nutrients than the groundwater in hard rock formations, which seems to be due to the adsorption of nutrients by the weathered rock materials. The seasonal water level fluctuation shows that rising water level increases nutrients concentration in groundwater due to the agriculture related activities. The results also indicate that nitrate and potassium concentrations are within the recommended drinking water limits, whereas phosphate concentration exceeds its drinking water limit and 35% of the samples are unsuitable for drinking purposes.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
149.
北冰洋海冰和海水变异对海洋生态系统的潜在影响   总被引:2,自引:0,他引:2       下载免费PDF全文
最近30年来,北冰洋海冰和海水发生了急剧变化:海冰覆盖面积减少、冰层变薄、水温升高、淡水输入增加、污染加剧,正威胁着现有与海冰关系密切的生态系统。预期随着变化的持续,与海冰相关的食物链将在部分海域消失并被较低纬度的海洋物种所取代、总初级生产力有望增加并为人类带来更多的渔获量、而北极熊和海象等以海冰作为栖息和捕食场所的大型哺乳动物的生存前景堪忧。今后人类将更为重视对北冰洋生态环境变化规律的认识并加以运用、关注北冰洋特有物种的命运并加以力所能及的保护、评估北冰洋生态系统的变化对人类社会经济的影响以期及早采取应对措施。数据积累是目前制约北极研究的最大障碍,但随着 SEARCH 等大型国际研究计划的实施,对北冰洋生态系统的监测和研究将更为系统和全面。  相似文献   
150.
Spatial information on soil properties is an important input to hydrological models. In current hydrological modelling practices, soil property information is often derived from soil category maps by the linking method in which a representative soil property value is linked to each soil polygon. Limited by the area‐class nature of soil category maps, the derived soil property variation is discontinuous and less detailed than high resolution digital terrain or remote sensing data. This research proposed dmSoil, a data‐mining‐based approach to derive continuous and spatially detailed soil property information from soil category maps. First, the soil–environment relationships are extracted through data mining of a soil map. The similarity of the soil at each location to different soil types in the soil map is then estimated using the mined relationships. Prediction of soil property values at each location is made by combining the similarities of the soil at that location to different soil types and the representative soil property values of these soil types. The new approach was applied in the Raffelson Watershed and Pleasant Valley in the Driftless Area of Wisconsin, United States to map soil A horizon texture (in both areas) and depth to soil C horizon (in Pleasant Valley). The property maps from the dmSoil approach capture the spatial gradation and details of soil properties better than those from the linking method. The new approach also shows consistent accuracy improvement at validation points. In addition to the improved performances, the inputs for the dmSoil approach are easy to prepare, and the approach itself is simple to deploy. It provides an effective way to derive better soil property information from soil category maps for hydrological modelling. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号