首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   7篇
  国内免费   3篇
测绘学   2篇
大气科学   3篇
地球物理   14篇
地质学   11篇
海洋学   5篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  1998年   2篇
排序方式: 共有35条查询结果,搜索用时 410 毫秒
11.
This work is a continuation of Musuuza et al. [37] in which a stability criterion for density-driven flow in a saturated homogeneous medium was derived. The criterion predicted the stability of a system as a function of the density and viscosity contrasts, the magnitude of the flow velocity and the concentration gradients for flow aligned orthogonal to gravity. It could not accurately predict stability transition with increasing velocity, a failure we attributed to dispersion effects that were not included. Small-scale dispersion and molecular diffusion, the main stabilising mechanisms in homogeneous media can stabilise flow if the instability wavelengths are below a certain cutoff. The width of the mixing zone is also central in controlling the range of wavelengths that persist into fingers. We propose a method of quantifying the cutoff wavelength and the width of the mixing zone, which are incorporated into the earlier criterion as constituents of the dispersive part. The earlier criterion is reformulated in terms of the Rayleigh number and with the dispersive part added, we attempt to predict the number of fingers formed which is directly related to the physical stability of the system. The inclusion of the Rayleigh number and dispersion into a single stability criterion provides new insight in the way dispersion affects vertical flow systems. Stability numbers computed with the new criterion are in reasonable agreement with numerical simulations for a range of physical variables. The numerical computations are performed with the software package d3f, which uses the cell-centred finite volume and the implicit Euler methods for the spatial and temporal discretisations, respectively. The admission of the density and dispersivities as inputs into the criterion makes it usable in practical problems.  相似文献   
12.
This study focuses on the geotechnical engineering structures with implicit or unknown expressions of performance functions. A one-dimensional integral approach (ODIA) consisting of sampling, evaluation of statistical moments for multivariable functions, probability density function fitting, and simple integration of failure probability was developed through system integration. A convergence study of an illustrative example was conducted, and the error analysis revealed that the accuracy of ODIA is equivalent to that of the second-order reliability method. Applications of ODIA to a slope and surrounding rock of an excavation were presented to further confirm the accuracy, efficiency, and practicability of the approach.  相似文献   
13.
基于大涡模拟评估GRAPES模式对对流边界层的模拟性能   总被引:3,自引:1,他引:2  
江川  沈学顺 《气象学报》2013,71(5):879-890
为检验GRAPES半拉格朗日动力框架在大涡尺度上的模拟性能,为未来发展千米及其以下高分辨尺度的数值模式奠定基础,并构造GRAPES大涡模式以检验和发展边界层湍流参数化提供科学工具。通过在GRAPES模式中加入Smagorinsky-Lilly小尺度湍涡参数化,并将模式分辨率提高至50 m,构建GRAPES大涡模式(GRAPES_LES),以便分析GRAPES模式在大涡尺度上的适用性。同时利用广泛应用的已有大涡模式UCLA_LES作为参考,通过对干对流边界层湍流的模拟分析及与UCLA_LES模拟结果的对比,得出如下主要结论:GRAPES半拉格朗日动力框架能够模拟出与已有的大涡模式相似的边界层湍流特征;同时,通过分析也证明GRAPES存在由于采用半拉格朗日平流计算而带来过度耗散的问题:当使用相同的滤波尺度(Smagorinsky 常数)时,GRAPES_LES模拟出的速度场更为平滑,小尺度湍流结构过于光滑,通过对湍流能量的能谱分析更清楚地表明了这一点。进一步,对不同的Smagorinsky常数(对应不同的滤波尺度)进行了敏感性试验,表明可以通过改变滤波尺度,有效地缓解半拉格朗日框架隐含的耗散问题,得到更接近UCLA_LES所模拟的湍流特征。  相似文献   
14.
像域层析速度建模方法利用偏移道集剩余曲率构建目标函数并迭代更新速度场.迭代更新速度场需反复进行叠前深度偏移,对于三维地震数据,偏移成像计算时间长,迭代更新过程成倍增加层析成像计算时间.本文由剩余时差拾取机理出发,提出隐式剩余时差概念,并建立隐式剩余时差与剩余速度之间的函数关系,利用该关系通过一次计算就可以对剩余速度进行精确求取并对速度模型进行精确更新,该方法避免了常规层析方法需要多次迭代的流程.由模型数据测试及实际数据应用证明,本文提出方法是有效可行的,该方法与常规层析方法进行比较,在保证提高层速度场建模精度的同时有效提高计算效率,为后续偏移成像节省大量时间.  相似文献   
15.
TTI介质隐式有限差分平面波偏移   总被引:1,自引:0,他引:1       下载免费PDF全文
文章研究了TTI介质隐式有限差分(IFD)波场外推算子和TTI介质平面波偏移.与各向同性和VTI介质相比,TTI介质频散关系要复杂的多,很难得到频散关系的显性表达,也不能再只用对称的偶函数表示,需要加入一个奇函数.文中设计TTI介质IFD波场外推算子并用非线性优化方法求解算子系数.将各向同性介质下平面波偏移理论与TTl...  相似文献   
16.
分析和预报局地对流时常用到对流温度,对流凝结高度常被用于估计局地对流云的云底高度。对流温度和对流凝结高度用于局地对流分析时存在一定的前提,且其蕴含的物理意义非常丰富。论文剖析了几本较为经典的气象专业书籍中对流温度概念图示,指出其中隐含的悖论,包括与大气稳定度基本常识相悖、违反大气能量学理论、以及与物理量本身含义明显抵触。进一步阐释构图不够严谨、对对流温度含义理解不完全到位是出现这种悖论的根本原因。并构造了物理意义清晰、气象基本理论更为合理的对流温度示意图。利用观测资料,分析了北京夏季对流云的发生频数和生成时间,尝试用对流温度预报局地对流云的生成,用对流凝结高度预报局地对流云云底高度。结果表明,对流温度在局地对流云的预报中具有一定的指示意义,对流凝结高度能在一定程度上反映出局地对流云的云底高度。如果将最高温度不低于对流温度1℃作为判定能否产生对流云的一个标准,临界成功指数达到45%。  相似文献   
17.
以实验室二维温带风暴潮数值模型为基础,综合考虑海洋潮波动力与风应力联合作用,建立温带风暴潮三维数值计算模型.模型从推导三维风暴潮基本控制方程出发,并应用交替方向隐格式(ADI)方法对方程进行离散求解.对于浅水动边界,模型采取局部深槽、缩小水域的活动边界处理方法.利用拟三维数值计算方法,并提出了非平面水深等分模式和平面等水深分布模式,应用这两种计算模式分别对渤海湾2009年5月8~10日发生的风暴潮过程进行了数值模拟.将风暴潮位计算结果和增水位计算结果与塘沽验潮站的实际观测数值进行对比验证,结果显示受风应力与潮波联合作用的风暴潮位和增水位与实测数据吻合良好;通过比较得到了平面等水深分布模式的计算成果要比非平面水深等分模式的计算成果更接近观测资料的结论,为风暴潮预报提供了理论依据.  相似文献   
18.
We propose new implicit staggered‐grid finite‐difference schemes with optimal coefficients based on the sampling approximation method to improve the numerical solution accuracy for seismic modelling. We first derive the optimized implicit staggered‐grid finite‐difference coefficients of arbitrary even‐order accuracy for the first‐order spatial derivatives using the plane‐wave theory and the direct sampling approximation method. Then, the implicit staggered‐grid finite‐difference coefficients based on sampling approximation, which can widen the range of wavenumber with great accuracy, are used to solve the first‐order spatial derivatives. By comparing the numerical dispersion of the implicit staggered‐grid finite‐difference schemes based on sampling approximation, Taylor series expansion, and least squares, we find that the optimal implicit staggered‐grid finite‐difference scheme based on sampling approximation achieves greater precision than that based on Taylor series expansion over a wider range of wavenumbers, although it has similar accuracy to that based on least squares. Finally, we apply the implicit staggered‐grid finite difference based on sampling approximation to numerical modelling. The modelling results demonstrate that the new optimal method can efficiently suppress numerical dispersion and lead to greater accuracy compared with the implicit staggered‐grid finite difference based on Taylor series expansion. In addition, the results also indicate the computational cost of the implicit staggered‐grid finite difference based on sampling approximation is almost the same as the implicit staggered‐grid finite difference based on Taylor series expansion.  相似文献   
19.
Due to complex dynamics inherent in the physical models, numerical formulation of subsurface and overland flow coupling can be challenging to solve. ParFlow is a subsurface flow code that utilizes a structured grid discretization in order to benefit from fast and efficient structured solvers. Implicit coupling between subsurface and overland flow modes in ParFlow is obtained by prescribing an overland boundary condition at the top surface of the computational domain. This form of implicit coupling leads to the activation and deactivation of the overland boundary condition during simulations where ponding or drying events occur. This results in a discontinuity in the discrete system that can be challenging to resolve. Furthermore, the coupling relies on unstructured connectivities between the subsurface and surface components of the discrete system, which makes it challenging to use structured solvers to effectively capture the dynamics of the coupled flow. We present a formulation of the discretized algebraic system that enables the use of an analytic form of the Jacobian for the Newton–Krylov solver, while preserving the structured properties of the discretization. An effective multigrid preconditioner is extracted from the analytic Jacobian and used to precondition the Jacobian linear system solver. We compare the performance of the new solver against one that uses a finite difference approximation to the Jacobian within the Newton–Krylov approach, previously used in the literature. Numerical results explores the effectiveness of using the analytic Jacobian for the Newton–Krylov solver, and highlights the performance of the new preconditioner and its cost. The results indicate that the new solver is robust and generally outperforms the solver that is based on the finite difference approximation to the Jacobian, for problems where the overland boundary condition is activated and deactivated during the simulation. A parallel weak scaling study highlights the efficiency of the new solver.  相似文献   
20.
Numerical hydrodynamic models of the northeastern Queensland shelf, forced by regional winds and modelled boundary currents in the northern Coral Sea, are used to provide improved estimates of general flow trajectories and water residence times within the Great Barrier Reef (GBR) shelf system. Model performance was checked against a limited set of current metre records obtained at Lark Reef (16°S) and the Ribbon Reefs (15.5°S). Estimates of water parcel trajectories are derived from a series of numerical tracer experiments, with daily releases of neutrally buoyant, un-reactive particles at 320 sites along the coast between Cape York (10.7°S) and Hervey Bay (25°S). Flow trajectories and residence times for tracer particles introduced to the GBR lagoon in the southern—ca. 22°S, central—19°S, and northern reef—14°S are emphasised. For purposes of the analysis, the year was divided into two seasons based on mean alongshore current direction. Most coastal sourced tracers entering the central GBR lagoon between 16° and 20°S during the northward-current season (January–August) primarily encounter the outer-shelf reef matrix after exiting the lagoon at its northern “head” (nominally 16°S), after 50–150 days. Up to 70% of tracer particles entering in the southward-current season (August–December) eventually crossed the lagoon to the outer-shelf reef matrix, with median crossing times between 20 and 330 days. During favourable wind conditions, tracers introduced at the coast may move rapidly across the lagoon into the reef matrix. The tracer experiments indicate that most coastal-sourced tracers entering the GBR lagoon remain near the coast for extended periods of time, moving north and south in a coastal band. Residence times for conservative tracer particles (and implied residence times for water-borne materials) within the GBR shelf system ranged from ca. 1 month to 1 year—time frames that are very long relative to development times of planktonic larvae and cycling times for nutrient materials in the water column, implying they are transformed long before reaching the outer reef matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号