首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
  国内免费   29篇
地球物理   6篇
地质学   43篇
海洋学   14篇
天文学   2篇
自然地理   3篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   8篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   7篇
  2002年   5篇
  2001年   1篇
  1999年   1篇
排序方式: 共有68条查询结果,搜索用时 109 毫秒
41.
Brazos-Trinity IV盆地和Ursa盆地均位于墨西哥湾东北部海域,两者相隔300km,经历了截然不同的更新世沉积历史。Brazos-Trinity IV盆地属于更新世晚期浊流沉积体系,沉积速率低,几乎不产生超压,而Ursa盆地受密西西比河流域的影响,具有极高的沉积速率,是一个典型的超高压沉积盆地。国际大洋综合钻探计划IODP308航次分别在两个盆地取得了钻孔样品,分析获得了沉积物孔隙水的各项地球化学数据。文章以这些分析结果为基础,讨论超压Ursa盆地U1322钻孔和常压Brazos-Trinity IV盆地U1319钻孔沉积物孔隙水中阴阳离子随深度的变化情况,并对孔隙水中保守性组分进行了相关性分析。对比研究发现U1322钻孔的碱度,Cl-,PO3-4和pH值明显低于U1319钻孔; 碱度与PO3-4,Ca2+,B3+之间以及K+与Li+在U1319钻孔呈现很好的相关性,而在U1322钻孔则无明显的相关关系; U1322钻孔孔隙水Cl-随深度逐渐降低,孔隙水被淡化。超压Ursa盆地沉积物孔隙水阴离子异常的主要原因可能是因为盆地底层的Blue Unit砂体将高和低超压区连接,流体在超压作用下由高压区流向低压区,阴离子含量较低的流体与沉积物孔隙水混合,造成U1322钻孔中阴离子浓度的异常,这可能也是U1322钻孔孔隙水保守性组分之间相关性较差的主要原因。  相似文献   
42.
日本南海海槽俯冲增生楔前缘的构造变形特征   总被引:1,自引:0,他引:1  
对增生楔不同压力—温度条件下的构造变形、流体活动、沉积特征、岩石物性和化学组成等多方面的直接观测,可以帮助分析俯冲带地震的蕴育和发生的环境与机理。通过参加IODP的日本南海海槽发震带研究项目(NanTroSEIZE)第一阶段316航次所收集到的大量第一手数据和资料,分别在4个站位上(C0004,C0006,C0007,C0008)对日本南海海槽增生楔前缘岩芯尺度上的构造变形进行了详细分析,并且讨论了岩芯尺度上的构造变形与增生楔中大尺度的非序列分支逆冲断层和前缘逆冲断层的构造变形之间的关系。发现逆冲变形不是只在大尺度的逆冲断层面上进行,而是弥散分布在主逆冲断层面、次级逆冲断层面以及断层面之间的更小的尺度上。小尺度构造的倾向与大尺度断层的倾向有较好的一致性,表明它们是在相同的应力场下所形成的。在增生楔浅部高角度的正断层比较发育,显示张性应力场特征,同时所获得的岩芯尺度上的地层倾角较大并倾向与反射地震以及区域地质分析结果非常吻合,而在深部,特别是在大尺度逆冲断层发育带附近,各种类型的断层、滑移变形带、节理等非常普遍,同时层理与劈理的产状的复杂变化更多地受控于复杂的逆冲断层带的作用。  相似文献   
43.
对综合大洋钻探计划(IODP)311航次652个岩心沉积物样品进行了自生黄铁矿颗粒筛选、显微形貌特征及其硫稳定同位素组成等初步研究。扫描电镜(SEM)照片显示黄铁矿以微球粒状和立方体状形貌产出,其成因与微生物作用和无机作用有关。黄铁矿的δ34SCDT值变化范围较大,从-35.4‰到+53.6‰,其成因与甲烷厌氧氧化作用(AOM)的关系密切。海水源为主的硫酸盐参与了沉积物上部的AOM过程,黄铁矿硫稳定同位素正偏的原因可能与较强的AOM作用和较多的残余硫酸盐参与有关。冷泉背景站位中黄铁矿的δ34SCDT值随着深度增加而增加,从浅表层的-35.83‰增加到深处的32.49‰,反映深处沉积物内黄铁矿形成过程中曾有过较多的残余硫酸盐参与还原,暗示其背景曾经是更高的甲烷通量和更强的AOM作用。研究结果提供了现代海洋天然气水合物背景下沉积物中自生黄铁矿及其硫稳定同位素特征记录,对于寻找我国海域天然气水合物资源,探索地史时期古海洋沉积物中甲烷事件记录具有重要的意义。  相似文献   
44.
白垩纪至早第三纪的极端气候事件   总被引:12,自引:2,他引:12  
地球科学界正在将预测未来气候变化的研究重点放到地球过去突然发生的气候变暖事件。白垩纪至早第三纪发生的极端气候事件被认为是最接近于现今的地球系统,对其研究有利于理解现今地球系统过程在碳循环快速搅动时的响应。这些气候事件主要包括:古新世-始新世最热事件(PETM,~5 5 MaBP)、早阿普第晚期和森诺曼-土仑界线的大洋缺氧事件(OAE1a,~120 Ma;OAE2,~93.5 MaBP)。PETM事件是中白垩世以来一次突然变暖事件,在10 ka年以内深海温度增加~5 ℃,表层海水温度增加 4~8 ℃,而δ13C至少发生 3.0‰的负偏移。目前普遍认为PETM事件是由于海洋气水化合物(CH4)的巨量释放造成的。大洋缺氧事件(OAEs)记录了海洋环境下有机质的大量埋藏,代表了碳循环和海洋生物系统的重大搅动事件。综合大洋钻探计划(IODP)将极端气候确定为优先研究领域,将采取特定的钻探策略,在世界大洋范围内获取最低限度蚀变的新生代至白垩纪沉积物,研究精度要求达到米兰柯维奇的天文调谐时间尺度,其最终目标是定量描述过去全球气候变化,并为未来气候变化预测提供依据。  相似文献   
45.
Subducted sediments play an important role in the magmatism at subduction zones and the formation of mantle heterogeneity, making them an important tracer for shallow crustal processes and deep mantle processes.Therefore, ascertaining the chemical compositions of different subduction end-members is a prerequisite for using subducted sediments to trace key geological processes. We reports here the comprehensive major and trace element analyses of 52 samples from two holes(U1414 A and U1381 C) dri...  相似文献   
46.
IODP333航次:科学目标、钻探进展与研究潜力   总被引:1,自引:0,他引:1  
高抒 《地球科学进展》2011,26(12):1290-1299
在“地震带实验项目”(NanTroSEIZE)的总体框架下,IODP333航次的任务是在日本四国岛岸外一条断面的3个站位获取岩芯。钻探于2010年12月12日至2011年1月10日实施,钻取了4个长岩芯,总长达1005m。IODP333航次的主要研究内容是陆坡、海沟底部和海山脊部的第四纪沉积过程,包括沉积层内的孔隙压力...  相似文献   
47.
深海研究中的底栖有孔虫:回顾与展望   总被引:4,自引:0,他引:4  
底栖有孔虫在古环境研究中的应用先是用作古水深或水团的标志物。随着新技术的应用,识别出了2种不同的底栖有孔虫微生境:外生种和内生种;认识到甚至深海底栖有孔虫,也能对表层浮游生物勃发的季节性短暂事件作出响应,因为沉降到海底的有机物质供养着底栖有孔虫。目前,底栖有孔虫被广泛应用于估算海洋表层生产力和底层水团的含氧量。回顾了深海底栖有孔虫生态研究的历史和其在古海洋学中的应用,并强调研究、应用中的新方法、新技术。中国已经加入了诸如IODP等深海研究计划,有必要向我国学术界提供底栖有孔虫研究的新方向,以资参考。  相似文献   
48.
洋底高原:了解地球内部的窗口   总被引:4,自引:0,他引:4  
洋底高原是洋壳的重要组成部分,它是分布在洋底的一种面积广大、且具有异常洋壳厚度的区域。洋底高原通常规模巨大,绝大多数喷发于大洋环境,岩石组成主要为镁铁质到超镁铁质,岩石类型主要为拉斑玄武岩。大多数洋底高原的岩石组成较为相似,而且均形成于一期或两期时间较短却大规模集中喷发的岩浆活动,目前认为是大规模的热地幔物质从地幔深部上升到岩石圈底部,由于巨大地幔柱头部(地幔羽)引起的熔融作用形成的。正是由于洋底高原与地幔柱之间具有这种十分密切的关系,因此对洋底高原的研究将成为我们了解地球内部的窗口。以ODP对翁通-爪哇和凯尔盖朗(Kerguelen)海台的研究为例,简单介绍了洋底高原的基本特征、地幔柱在其形成过程中的作用以及目前在这一领域还未解决的一些问题。  相似文献   
49.
The Antarctic and the Arctic regions play a key role in global sea level change and carbon cycle, and reserve key information of the Cenozoic transition from a green-house to an ice-house Earth. They have become hot spots in earth science studies. The geological drilling projects in both polar regions (e.g., DSDP/ODP/IODP/ICDP) have achieved remarkable successes, which have freshened the knowledge of global environmental and climatic evolution. Along with the Cenozoic global cooling, the timing of glaciation was almost synchronous on both the Antarctic and the Arctic. Accompanied with the Antarctic ice sheet build-up and increased terrestrial weathering, the enhanced formation of Antarctic Bottom Water exerts significant impact on global ocean circulation. The volume of unstable West Antarctic Ice Sheet fluctuates during glacial-interglacial periods showing 40 ka obliquity cycles, its volume significantly reduced or collapsed during several peak interglacials or long warm intervals. The Southern Ocean plays a significant role modulating atmospheric CO2 concentration, global deep water circulation and nutrient distribution, productivity at different time scales. Sea level responses to the waxing and waning of polar ice sheets at different time intervals were tested, which provide valuable clue for predicting future sea level changes. The upcoming IODP drilling projects on polar regions will keep focusing on the high latitude ice sheet development, Southern Ocean paleoceanographic evolution, land-ocean linkages in the Arctic, and the impacts on the global climate, which will provide important boundary conditions for predicting global future climate evolution.  相似文献   
50.
围绕IODP 683号建议书,介绍东亚东倾地形格局与季风系统演化历史的相关研究。新生代全球宏观环境格局发生了一系列重大变化,表现为岩石圈活动强烈,板块漂移导致海陆格局和地貌格局的变化,并引发洋流和大气环流的改组,最终导致全球气候的重大变化。新生代岩石圈运动和气候变化表现最为典型的地区是亚洲,其中最具标志性和全球意义的地质事件是喜马拉雅山和青藏高原的隆升及亚洲季风系统的形成与演化。青藏高原隆升最直接的结果是亚洲地区现代地貌格局的形成,大江大河的发育,并在很大程度上影响了亚洲季风系统的形成与演化。综合大洋钻探计划683号航次建议书,计划在长江中下游盆地和东海陆架盆地实施钻探,以获得长江历史演化和东亚季风演化的地质记录,并为研究青藏高原的演化提供新的证据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号