首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5142篇
  免费   1568篇
  国内免费   268篇
测绘学   51篇
大气科学   1篇
地球物理   3642篇
地质学   2306篇
海洋学   291篇
天文学   330篇
综合类   10篇
自然地理   347篇
  2024年   2篇
  2023年   1篇
  2022年   1篇
  2021年   68篇
  2020年   83篇
  2019年   263篇
  2018年   467篇
  2017年   487篇
  2016年   522篇
  2015年   468篇
  2014年   465篇
  2013年   771篇
  2012年   460篇
  2011年   417篇
  2010年   351篇
  2009年   250篇
  2008年   327篇
  2007年   224篇
  2006年   226篇
  2005年   226篇
  2004年   188篇
  2003年   189篇
  2002年   156篇
  2001年   136篇
  2000年   147篇
  1999年   37篇
  1998年   8篇
  1997年   14篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1991年   6篇
  1990年   1篇
排序方式: 共有6978条查询结果,搜索用时 0 毫秒
881.
A variety of soft‐sediment deformation structures formed during or shortly after deposition occurs in the Cretaceous Seongpori and Dadaepo Formations of the southeastern Gyeongsang Basin exposed along coastal areas of southeastern Korean Peninsula for 0.5–2 km. These are mostly present in a fluvial plain facies, with interbedded lacustrine deposits. In this study, the features of different kinds of soft‐sediment deformation structures have been interpreted on the basis of sedimentology of structure‐bearing deposits, comparison with normal sedimentary structures, timing and mechanism of deformation, and triggering mechanisms. The soft‐sediment deformation structures can be classified into four morphological groups: (i) load structures (load casts, ball‐and‐pillow structures); (ii) soft‐sediment intrusive structures (dish‐and‐pillars, clastic dykes, sills); (iii) ductile disturbed structures (convolute folds, slump structures); and (iv) brittle deformation structures (syndepositional faulting, dislocated breccia). The most probable triggering mechanisms resulting in these structures were seismic shocks. These interpretations are based on the following field observations: (i) location of the study area within tectonically active fault zone reactivated several times during the Cretaceous; (ii) deformation structures confined to single stratigraphic levels; (iii) lateral continuity and occurrences of various soft‐sediment deformation structures in the deformed level over large areas; (iv) absence of depositional slope to indicate gravity sliding or slumping; and (v) similarity to the structures produced experimentally. The soft‐sediment deformation structures in the study areas are thus interpreted to have been generated by seismic shocks with an estimated magnitude of M > 5, representing an intermittent record of the active tectonic and sedimentary processes during the development and evolution of two formations from the late Early Cretaceous to the Late Cretaceous.  相似文献   
882.
Seventeen physical and chemical parameters were obtained from a hydroelectric reservoir located in a tropical region in the south of Brazil. Multivariate Principal Component Analysis (PCA) and Hierarchical Group Analysis (HGA) were used to identify the parameters discriminating the origin of water from the Tibagi and the Primeiro de Maio River, after it has passed the mixing region. The study was conducted during the dry and rainy seasons in July 2002 and February 2003 at three depths and three sampling sites located 0, 5, and 10 km away from the mixing region. The statistical methods showed to be appropriate for identifying the contribution of each tributary in the water mixing site of a complex water system. The most important discriminating parameter was the absorbance relation A(253 nm)/A(203 nm), followed by the concentrations of Fe(III), Mn(III), and Ni(II). An anthropogenic interference was found in the reservoir due to high Ni(II) and orthophosphate concentrations caused by a nearby town sewage discharge. The interference was more important during the dry periods due to the lower dispersion of the pollutants. Urgent initiatives should be taken from the state government to build treatment stations for the wastewater of the small cities around the Capivara hydroelectric reservoir to prevent the drinking water quality from deteriorating.  相似文献   
883.
In the work reported here the comprehensive physics‐based Integrated Hydrology Model (InHM) was employed to conduct both three‐ and two‐dimensional (3D and 2D) hydrologic‐response simulations for the small upland catchment known as C3 (located within the H. J. Andrews Experimental Forest in Oregon). Results from the 3D simulations for the steep unchannelled C3 (i) identify subsurface stormflow as the dominant hydrologic‐response mechanism and (ii) show the effect of the down‐gradient forest road on both the surface and subsurface flow systems. Comparison of the 3D results with the 2D results clearly illustrates the importance of convergent subsurface flow (e.g. greater pore‐water pressures in the hollow of the catchment for the 3D scenario). A simple infinite‐slope model, driven by subsurface pore‐water pressures generated from the 3D and 2D hydrologic‐response simulations, was employed to estimate slope stability along the long‐profile of the C3 hollow axis. As expected, the likelihood of slope failure is underestimated for the lower pore pressures from the 2D hydrologic‐response simulation compared, in a relative sense, to the higher pore pressures from the 3D hydrologic response simulation. The effort reported herein provides a firm quantitative foundation for generalizing the effects that forest roads can have on near‐surface hydrologic response and slope stability at the catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
884.
This study investigates the dynamic behavior of suspended sediment load transport at different temporal scales in the Mississippi River basin. Data corresponding to five successively doubled temporal scales (i.e. daily, two‐day, four‐day, eight‐day and 16‐day) from the St. Louis gaging station in Missouri are analyzed. The investigation is focused on identifying possible low‐dimensional deterministic behavior in the suspended sediment load transport dynamics, with an aim towards reduction in model complexity. The correlation dimension method is used to identify low‐dimensional determinism. The suspended sediment load dynamics are represented through phase‐space reconstruction, and the variability is estimated using the (proximity of) reconstructed vectors in the phase space. The results indicate the presence of low‐dimensional determinism in the suspended sediment load series at each of the five temporal scales, with the variables dominantly governing the dynamics in the order of three or four. These results not only suggest the appropriateness of relatively simpler models but also hint at possible scale invariance in the suspended sediment load transport dynamics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
885.
Modeling doline populations with logistic growth functions   总被引:1,自引:0,他引:1  
Initiation and evolution of a large karst depression population consisting of parent and daughter dolines were spatially and temporally modeled using logistic growth functions. Logistic growth models are well suited for analyzing doline population initiation and evolution because they reflect the density‐dependent growth mechanisms present in the evolution of karst depressions. Seven assumptions based upon previous studies were refined into mathematical statements and tested using more than 2000 dolines from a subpopulation of both parent and daughter karst depressions on the Western Highland Rim and Pennyroyal Plain of Tennessee and Kentucky. Logistic growth models quantify the initiation and evolution of doline populations and interface well with recent models describing the evolution of three‐dimensional conduit systems. Logistic growth models should apply to modeling other doline populations in karst terranes with hydraulically efficient, three‐dimensional conduit systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
886.
Nonlinear determinism in river flow: prediction as a possible indicator   总被引:2,自引:0,他引:2  
Whether or not river flow exhibits nonlinear determinism remains an unresolved question. While studies on the use of nonlinear deterministic methods for modeling and prediction of river flow series are on the rise and the outcomes are encouraging, suspicions and criticisms of such studies continue to exist as well. An important reason for this situation is that the correlation dimension method, used as a nonlinear determinism identification tool in most of those studies, may possess certain limitations when applied to real river flow series, which are always finite and often short and also contaminated with noise (e.g. measurement error). In view of this, the present study addresses the issue of nonlinear determinism in river flow series using prediction as a possible indicator. This is done by (1) reviewing studies that have employed nonlinear deterministic methods (coupling phase‐space reconstruction and local approximation techniques) for river flow predictions and (2) identifying nonlinear determinism (or linear stochasticity) based on the level of prediction accuracy in general, and on the prediction accuracy against the phase‐space reconstruction parameters in particular (termed as the ‘inverse approach’). The results not only provide possible indications to the presence of nonlinear determinism in the river flow series studied, but also support, both qualitatively and quantitatively, the low correlation dimensions reported for such. Therefore, nonlinear deterministic methods are a viable complement to linear stochastic ones for studying river flow dynamics, if sufficient caution is exercised in their applications and in interpreting the outcomes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
887.
888.
Research in landscape evolution over millions to tens of millions of years slowed considerably in the mid‐20th century, when Davisian and other approaches to geomorphology were replaced by functional, morphometric and ultimately process‐based approaches. Hack's scheme of dynamic equilibrium in landscape evolution was perhaps the major theoretical contribution to long‐term landscape evolution between the 1950s and about 1990, but it essentially ‘looked back’ to Davis for its springboard to a viewpoint contrary to that of Davis, as did less widely known schemes, such as Crickmay's hypothesis of unequal activity. Since about 1990, the field of long‐term landscape evolution has blossomed again, stimulated by the plate tectonics revolution and its re‐forging of the link between tectonics and topography, and by the development of numerical models that explore the links between tectonic processes and surface processes. This numerical modelling of landscape evolution has been built around formulation of bedrock river processes and slope processes, and has mostly focused on high‐elevation passive continental margins and convergent zones; these models now routinely include flexural and denudational isostasy. Major breakthroughs in analytical and geochronological techniques have been of profound relevance to all of the above. Low‐temperature thermochronology, and in particular apatite fission track analysis and (U–Th)/He analysis in apatite, have enabled rates of rock uplift and denudational exhumation from relatively shallow crustal depths (up to about 4 km) to be determined directly from, in effect, rock hand specimens. In a few situations, (U–Th)/He analysis has been used to determine the antiquity of major, long‐wavelength topography. Cosmogenic isotope analysis has enabled the determination of the ‘ages’ of bedrock and sedimentary surfaces, and/or the rates of denudation of these surfaces. These latter advances represent in some ways a ‘holy grail’ in geomorphology in that they enable determination of ‘dates and rates’ of geomorphological processes directly from rock surfaces. The increasing availability of analytical techniques such as cosmogenic isotope analysis should mean that much larger data sets become possible and lead to more sophisticated analyses, such as probability density functions (PDFs) of cosmogenic ages and even of cosmogenic isotope concentrations (CICs). PDFs of isotope concentrations must be a function of catchment area geomorphology (including tectonics) and it is at least theoretically possible to infer aspects of source area geomorphology and geomorphological processes from PDFs of CICs in sediments (‘detrital CICs’). Thus it may be possible to use PDFs of detrital CICs in basin sediments as a tool to infer aspects of the sediments' source area geomorphology and tectonics, complementing the standard sedimentological textural and compositional approaches to such issues. One of the most stimulating of recent conceptual advances has followed the considerations of the relationships between tectonics, climate and surface processes and especially the recognition of the importance of denudational isostasy in driving rock uplift (i.e. in driving tectonics and crustal processes). Attention has been focused very directly on surface processes and on the ways in which they may ‘drive’ rock uplift and thus even influence sub‐surface crustal conditions, such as pressure and temperature. Consequently, the broader geoscience communities are looking to geomorphologists to provide more detailed information on rates and processes of bedrock channel incision, as well as on catchment responses to such bedrock channel processes. More sophisticated numerical models of processes in bedrock channels and on their flanking hillslopes are required. In current numerical models of long‐term evolution of hillslopes and interfluves, for example, the simple dependency on slope of both the fluvial and hillslope components of these models means that a Davisian‐type of landscape evolution characterized by slope lowering is inevitably ‘confirmed’ by the models. In numerical modelling, the next advances will require better parameterized algorithms for hillslope processes, and more sophisticated formulations of bedrock channel incision processes, incorporating, for example, the effects of sediment shielding of the bed. Such increasing sophistication must be matched by careful assessment and testing of model outputs using pre‐established criteria and tests. Confirmation by these more sophisticated Davisian‐type numerical models of slope lowering under conditions of tectonic stability (no active rock uplift), and of constant slope angle and steady‐state landscape under conditions of ongoing rock uplift, will indicate that the Davis and Hack models are not mutually exclusive. A Hack‐type model (or a variant of it, incorporating slope adjustment to rock strength rather than to regolith strength) will apply to active settings where there is sufficient stream power and/or sediment flux for channels to incise at the rate of rock uplift. Post‐orogenic settings of decreased (or zero) active rock uplift would be characterized by a Davisian scheme of declining slope angles and non‐steady‐state (or transient) landscapes. Such post‐orogenic landscapes deserve much more attention than they have received of late, not least because the intriguing questions they pose about the preservation of ancient landscapes were hinted at in passing in the 1960s and have recently re‐surfaced. As we begin to ask again some of the grand questions that lay at the heart of geomorphology in its earliest days, large‐scale geomorphology is on the threshold of another ‘golden’ era to match that of the first half of the 20th century, when cyclical approaches underpinned virtually all geomorphological work. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
889.
In this study, we formulate an improved finite element model‐updating method to address the numerical difficulties associated with ill conditioning and rank deficiency. These complications are frequently encountered model‐updating problems, and occur when the identification of a larger number of physical parameters is attempted than that warranted by the information content of the experimental data. Based on the standard bounded variables least‐squares (BVLS) method, which incorporates the usual upper/lower‐bound constraints, the proposed method (henceforth referred to as BVLSrc) is equipped with novel sensitivity‐based relative constraints. The relative constraints are automatically constructed using the correlation coefficients between the sensitivity vectors of updating parameters. The veracity and effectiveness of BVLSrc is investigated through the simulated, yet realistic, forced‐vibration testing of a simple framed structure using its frequency response function as input data. By comparing the results of BVLSrc with those obtained via (the competing) pure BVLS and regularization methods, we show that BVLSrc and regularization methods yield approximate solutions with similar and sufficiently high accuracy, while pure BVLS method yields physically inadmissible solutions. We further demonstrate that BVLSrc is computationally more efficient, because, unlike regularization methods, it does not require the laborious a priori calculations to determine an optimal penalty parameter, and its results are far less sensitive to the initial estimates of the updating parameters. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
890.
A method for parametric system identification of classically damped linear system in frequency domain is adopted and extended for non‐classically damped linear systems subjected up to six components of earthquake ground motions. This method is able to work in multi‐input/multi‐output (MIMO) case. The response of a two‐degree‐of‐freedom model with non‐classical damping, excited by one‐component earthquake ground motion, is simulated and used to verify the proposed system identification method in the single‐input/multi‐output case. Also, the records of a 10 storey real building during the Northridge earthquake is used to verify the proposed system identification method in the MIMO case. In this case, at first, a single‐input/multi‐output assumption is considered for the system and modal parameters are identified, then other components of earthquake ground motions are added, respectively, and the modal parameters are identified again. This procedure is repeated until all four components of earthquake ground motions which are measured at the base level of the building are included in the identification process. The results of identification of real building show that consideration of non‐classical damping and inclusion of the multi‐components effect of earthquake ground motions can improve the least‐squares match between the finite Fourier transforms of recorded and calculated acceleration responses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号