首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   13篇
  国内免费   39篇
地球物理   4篇
地质学   137篇
综合类   3篇
自然地理   3篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   11篇
  2019年   11篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2010年   1篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   5篇
  2004年   8篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   6篇
  1997年   6篇
  1996年   3篇
  1994年   3篇
  1993年   13篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有147条查询结果,搜索用时 31 毫秒
21.
Conventional diamond exploration seldom searches directly for diamonds in rock and soil samples. Instead, it focuses on the search for indicator minerals like chrome spinel, which can be used to evaluate diamond potential. Chrome spinels are preserved as pristine minerals in the early Paleozoic (∼465 Ma), hydrothermally altered, Group I No. 30 pipe kimberlite that intruded the Neoproterozoic Qingbaikou strata in Wafangdian, North China Craton (NCC). The characteristics of the chrome spinels were investigated by petrographic observation (BSE imaging), quantitative chemical analysis (EPMA), and Raman spectral analysis. The results show that the chrome spinels are mostly sub-rounded with extremely few grains being subhedral, and these spinels are macrocrystic, more than 500 µm in size. The chrome spinels also have compositional zones: the cores are classified as magnesiochromite as they have distinctly chromium-rich (Cr2O3 up to 66.56 wt%) and titanium-poor (TiO2 < 1 wt%) compositions; and the rims are classified as magnetite as they have chromium-poor and iron-rich composition. In the cores of chrome spinels, compositional variations are controlled by Al3+-Cr3+ isomorphism, which results in a strong Raman spectra peak (A1g mode) varying from 690 cm−1 to 702.9 cm−1. In the rims of chrome spinel, compositional variations result in the A1g peak varying from 660 cm−1 to 672 cm−1. The morphology and chemical compositions indicate that the chrome spinels are mantle xenocrysts. The cores of the spinel are remnants of primary mantle xenocrysts that have been resorbed, and the rims were formed during kimberlite magmatism. The compositions of the cores are used to evaluate the diamond potential of this kimberlite through comparison with the compositions of chrome spinels from the Changmazhuang and No. 50 pipe kimberlites in the NCC. In MgO, Al2O3 and TiO2 versus Cr2O3 plots, the chrome spinels from the Changmazhuang and No. 50 pipe kimberlites are mostly located in the diamond stability field. However, only a small proportion of chrome spinels from No. 30 pipe kimberlite have same behavior, which indicates that the diamond potential of the former two kimberlites is greater than that of the No. 30 pipe kimberlite. This is also supported by compositional zones in the spinel grains: there is with an increase in Fe3+ in the rims, which suggests that the chrome spinels experienced highly oxidizing conditions. Oxidizing conditions may have been imparted by fluids/melts that have a great influence on diamond destruction. Here, we suggest that chrome spinel compositions can be a useful tool for identifying the target for diamond potential in the North China Craton.  相似文献   
22.
Picroilmenite samples from five kimberlite pipes of the Yakutian kimberlite province have been studied. Point microprobe analyses of two mutually perpendicular profiles of each sample were carried out to study the compositional inhomogeneity of picroilmenite. Thermomagnetic curves were also recorded for each sample. A model for the processing of thermomagnetic curves is proposed on the basis of the relationship between the Curie point of picroilmenite and the content of the hematite end-member. The compositions determined by the thermomagnetic curves and microprobe analysis are rather similar. The conclusion has been drawn that thermomagnetic analysis can be used for the rapid determination of the picroilmenite composition. The possibilities and restrictions of this method are shown.  相似文献   
23.
鲁西地区作为华北克拉通的一部分,自古元古代早期(约2400Ma)二长花岗质岩石侵位以后至晚古生代(约250Ma),一直处于板内稳定地块状态,在这漫长的2150Ma年里仅形成了两期脉岩,即四堡期侵位的基性辉绿岩(牛岚单元)与中晚奥陶世侵位的超基性金伯利岩(常马庄单元)。经对控制辉绿岩侵位的构造特征进行研究发现,该构造体系不仅控制了鲁西辉绿岩的侵位,还控制了金伯利岩的侵位。在此基础上,对蒙阴金伯利岩带的控制规律进行了分析,并对金伯利岩带向南延伸的区域进行了初步的预测。  相似文献   
24.
Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism   总被引:1,自引:1,他引:1  
The oxidation state, reflected in the oxygen fugacity (fO2), of the subcratonic lithospheric mantle is laterally and vertically heterogeneous. In the garnet stability field, the Kaapvaal lithospheric mantle becomes progressively more reducing with increasing depth from Δlog fO2 FMQ-2 at 110 km to FMQ-4 at 210 km. Oxidation accompanying metasomatism has obscured this crystal-chemical controlled depth-fO2 trend in the mantle beneath Kimberley, South Africa. Chondrite normalized REE patterns for garnets, preserve evidence of a range in metasomatic enrichment from mild metasomatism in harzburgites to extensive metasomatism by LREE-enriched fluids and melts with fairly unfractionated LREE/HREE ratios in phlogopite-bearing lherzolites. The metasomatized xenoliths record redox conditions extending up to Δlog fO2 = FMQ, sufficiently oxidized that magnesite would be the stable host of carbon in the most metasomatized samples. The most oxidized lherzolites, those in or near the carbonate stability field, have the greatest modal abundance of phlogopite and clinopyroxene. Clinopyroxene is modally less abundant or absent in the most reduced peridotite samples. The infiltration of metasomatic fluids/melts into diamondiferous lithospheric mantle beneath the Kaapvaal craton converted reduced, anhydrous harzburgite into variably oxidized phlogopite-bearing lherzolite. Locally, portions of the lithospheric mantle were metasomatized and oxidized to an extent that conversion of diamond into carbonate should have occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
25.
Based on the measurements of refractive index,specific gravity,unit cell parameter,and mineral chemistry and infrared absorption spectrum analyses of pyropes in kimberlites from China,systematic studies of the Physical properties and compositional variations of pyropes of different colors and diverse paragenetic types,within and between kimberlite provinces have been undertaken,The origin of pyropes in the Kimberlites and the depth of their formation have been discussed.Pyropes of the purple series are different from those of the orange series in physical and chemical properties,for exaple,pyropes of the puple series are higher in α0,RI,SG,Cr2O3,MgO,Cr/(Cr Al),Mg/(Mg Fe),and Mg/(Mg Ca),and lower in Al2O3,Fe2O3 FeO than those of the orange series.The classification of garnets in kimberlites from china by the Dawson and Stephens‘ method(1975) has been undertaken and clearly demonstrates that pyropes of diamond-rich kimberlites contain much more groups than those of diamond-poor,especially diamond-free kimberlites.The higher in α0,RI,SG,Cr2O(3.Cr/(Cr Al),knorringite and Cr-component the pyropes are ,the richer in diamond the kimberlites will be.The infrared absorption spectrum patterns of pyropes change with their chemical composition regularly,as reflected in the shape and position of infrared absorption peaks.Two absortpion bands at 862-901 cm^-1 will grade into degeneration from splitting and the absorption band positions of pyropes shift toward lower frequency with increasing Cr2O3 content and Cr/(Cr Al) ratio of pyropes,LREE contents of orange pyrope megacrysts are similar to those of porple pyrope macrocrysts,but the former is higher in HREE than the latter,showing their different chondrite-normalized patterns.The formation pressures of pyropes calculated by Cr-component,Ca-component,knorringite molecules of pyropes show that some pyropes of the purple series in diamondiferous kimberlites fall into the diamond stability field.but all pyropes of diamond-free kimberlites lie outside the diamond stability field.The megacrysts were formed through early crystallization of kimberlites magma at high pressure condition,the majority of the purple pyrope macrocrysts have been derived from disaggregated xenoliths but the minoirty of them appear to be fragments of the discrete megacryst pyropes,or phenocrysts.  相似文献   
26.
The pipe shapes, infill and emplacement processes of the Attawapiskat kimberlites, including Victor, contrast with most of the southern African kimberlite pipes. The Attawapiskat kimberlite pipes are formed by an overall two-stage process of (1) pipe excavation without the development of a diatreme (sensu stricto) and (2) subsequent pipe infilling. The Victor kimberlite comprises two adjacent but separate pipes, Victor South and Victor North. The pipes are infilled with two contrasting textural types of kimberlite: pyroclastic and hypabyssal-like kimberlite. Victor South and much of Victor North are composed of pyroclastic spinel carbonate kimberlites, the main features of which are similar: clast-supported, discrete macrocrystal and phenocrystal olivine grains, pyroclastic juvenile lapilli, mantle-derived xenocrysts and minor country rock xenoliths are set in serpentine and carbonate matrices. These partly bedded, juvenile lapilli-bearing olivine tuffs appear to have been formed by subaerial fire-fountaining airfall processes.

The Victor South pipe has a simple bowl-like shape that flares from just below the basal sandstone of the sediments that overlie the basement. The sandstone is a known aquifer, suggesting that the crater excavation process was possibly phreatomagmatic. In contrast, the pipe shape and internal geology of Victor North are more complex. The northwestern part of the pipe is dominated by dark competent rocks, which resemble fresh hypabyssal kimberlite, but have unusual textures and are closely associated with pyroclastic juvenile lapilli tuffs and country rock breccias±volcaniclastic kimberlite. Current evidence suggests that the hypabyssal-like kimberlite is, in fact, not intrusive and that the northwestern part of Victor North represents an early-formed crater infilled with contrasting extrusive kimberlites and associated breccias. The remaining, main part of Victor North consists of two macroscopically similar, but petrographically distinct, pyroclastic kimberlites that have contrasting macrodiamond sample grades. The juvenile lapilli of each pyroclastic kimberlite can be distinguished only microscopically. The nature and relative modal proportion of primary olivine phenocrysts in the juvenile lapilli are different, indicating that they derive from different magma pulses, or phases of kimberlite, and thus represent separate eruptions. The initial excavation of a crater cross-cutting the earlier northwestern crater was followed by emplacement of phase (i), a low-grade olivine phenocryst-rich pyroclastic kimberlite, and the subsequent eruption of phase (ii), a high-grade olivine phenocryst-poor pyroclastic kimberlite, as two separate vents nested within the original phase (i) crater. The second eruption was accompanied by the formation of an intermediate mixed zone with moderate grade. Thus, the final pyroclastic pipe infill of the main part of the Victor North pipe appears to consist of at least three geological/macrodiamond grade zones.

In conclusion, the Victor kimberlite was formed by several eruptive events resulting in adjacent and cross-cutting craters that were infilled with either pyroclastic kimberlite or hypabyssal-like kimberlite, which is now interpreted to be of probable extrusive origin. Within the pyroclastic kimberlites of Victor North, there are two nested vents, a feature seldom documented in kimberlites elsewhere. This study highlights the meaningful role of kimberlite petrography in the evaluation of diamond deposits and provides further insight into kimberlite emplacement and volcanism.  相似文献   

27.
Discovery of diamondiferous kimberlites in the Mainpur Kimberlite Field, Raipur District, Chhattisgarh in central India, encouraged investigation of similar bodies in other parts of the Bastar craton. The earlier known Tokapal ultramafic intrusive body, located beyond the 19-km milestone in Tokapal village along the Jagdalpur–Geedam road, was reinterpreted as crater-facies kimberlite. Its stratigraphic position in the Meso-Neoproterozoic intracratonic sedimentary Indravati basin makes it one of the oldest preserved crater-facies kimberlite systems. Ground and limited subsurface data (dug-, tube-wells and exploratory boreholes) have outlined an extensive surface area (>550 ha) of the kimberlite. The morphological and surface color features of this body on enhanced satellite images suggest that there is a central feeder surrounded by a collar and wide pyroclastic apron. Exploration drilling indicates that the central zone probably corresponds to a vent overlain by resedimented volcaniclastic (epiclastic) rocks that are surrounded by a 2-km-wide spread of pyroclastic rocks (lapilli tuff, tuff/ash beds and volcaniclastic breccia). Drill-holes also reveal that kimberlitic lapilli tuffs and tuffs are sandwiched between the Kanger and Jagdalpur Formations and also form sills within the sedimentary sequence of the Indravati basin. The lapilli tuffs are commonly well stratified and display slumping. Base surges and lava flows occur in the southern part of the Tokapal system. The geochemistry and petrology of the rock correspond to average Group I kimberlite with a moderate degree of contamination. However, the exposed rock is intensely weathered and altered with strong leaching of mobile elements (Ba, Rb, Sr). Layers of vesicular fine-grained glassy material represent kimberlitic lava flows. Tuffs containing juvenile lapilli with pseudomorphed olivine macrocrysts are set in a talc–serpentine–carbonate matrix with locally abundant spinel and sphene. Garnet has not been observed, and phlogopite is very rare. Very limited microdiamond testing (two 18-kg samples) proved negative; however, the composition of chromite grains indicate crystallization in the diamond stability field.  相似文献   
28.
中国金伯利岩中的钛铁矿   总被引:2,自引:0,他引:2  
董振信 《矿物学报》1991,11(2):141-147
本文研究了金伯利岩中,作为巨晶和粗晶,基质相矿物,与金云母、镁铝榴石、铬尖晶石等矿物的连生体,金刚石中包裹体矿物及金伯利岩地幔岩包裹体矿物产出的钛铁矿的大小,形态、皮壳及化学成分、端元组分、环带及成分变异趋势。并与其他岩类中的钛铁矿作了对比。探讨了不同产状、共生组合类型的钛铁矿的成因。指出了与金刚石紧密伴生的钛铁矿的标型特征及找矿意义。  相似文献   
29.
金伯利岩中铬铁矿原生表面特征成因类型及其成分特征   总被引:1,自引:0,他引:1  
孙国利  赵磊  李友枝 《地质与勘探》1999,35(3):17-20,29
对金伯利岩中铬铁矿原生表面特征的成因做出了合理解释,并提出了4种成因类型;通过探讨铬铁矿原生表面特征,化学成分,含矿性之间的关系,初步建立了铬铁矿原生表面特征与金刚石含矿性之间的关系。  相似文献   
30.
金刚石及其寄主岩石是人类认识地球深部物质组成和性质、壳幔和核幔物质循环重要研究对象。本文总结了中国不同金刚石类型的分布,着重对比了博茨瓦纳和中国含金刚石金伯利岩的地质特征,取得如下认识:(1)博茨瓦纳含矿原生岩石仅为金伯利岩,而中国含矿岩石成分复杂,金伯利岩主要出露在华北克拉通,展布于郯庐、华北中央和华北北缘金伯利岩带,具有工业价值的蒙阴和瓦房店矿床分布于郯庐金伯利岩带中;钾镁煌斑岩主要出露在华南克拉通,重点分布在江南和华南北缘钾镁煌斑岩带中;(2)钙钛矿原位U-Pb年龄和Sr、Nd同位素显示,86~97 Ma奥拉帕金伯利岩群和456~470 Ma蒙阴和瓦房店金伯利岩均具有低87Sr/86Sr(0.703~0.705)和中等εNd(t)(-0.09~+5)特征,指示金伯利岩浆源自弱亏损地幔或初始地幔源区;(3)博茨瓦纳金伯利岩体绝大多数以岩筒产出,而中国以脉状为主岩筒次之;博茨瓦纳岩筒绝大部分为火山口相,中国均为根部相,岩筒地表面积普遍小于前者;(4)奥拉帕A/K1和朱瓦能金伯利岩体是世界上为数不多的主要产出榴辉岩捕虏体和E型金刚石的岩筒之一,而同位于奥拉帕岩群的莱特拉卡内、丹姆沙和卡罗韦岩体与我国郯庐带的金伯利岩体类似,均主要产出地幔橄榄岩捕虏体以及P型和E型金刚石;(5)寻找含矿金伯利岩重点注意以下几点:克拉通内部和周缘深大断裂带是重要的控岩构造;镁铝榴石、镁钛铁矿、铬透辉石、铬尖晶石和铬金红石等是寻找含金刚石金伯利岩重要的指示矿物;航磁等地球物理测量需与土壤取样找矿方法相结合才能取得更好效果;(6)郯庐金伯利岩带、江南钾镁煌斑岩带和塔里木地块是中国重要含矿岩石的找矿靶区,冲积型金刚石成矿潜力巨大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号