首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   58篇
  国内免费   119篇
测绘学   2篇
大气科学   5篇
地球物理   87篇
地质学   361篇
海洋学   19篇
天文学   2篇
综合类   13篇
自然地理   43篇
  2024年   2篇
  2023年   5篇
  2022年   7篇
  2021年   14篇
  2020年   14篇
  2019年   21篇
  2018年   10篇
  2017年   22篇
  2016年   10篇
  2015年   13篇
  2014年   24篇
  2013年   24篇
  2012年   35篇
  2011年   15篇
  2010年   13篇
  2009年   15篇
  2008年   24篇
  2007年   35篇
  2006年   15篇
  2005年   27篇
  2004年   38篇
  2003年   19篇
  2002年   18篇
  2001年   16篇
  2000年   17篇
  1999年   14篇
  1998年   11篇
  1997年   6篇
  1996年   8篇
  1995年   6篇
  1994年   13篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
排序方式: 共有532条查询结果,搜索用时 15 毫秒
31.
核爆炸玻璃、撞击玻璃和玻璃陨石源岩   总被引:3,自引:0,他引:3       下载免费PDF全文
本文根据核爆炸岩石熔融玻璃的地球化学研究结果,与超速陨石撞击坑的熔岩进行比较,获得在远离热力学平衡条件下,各种玻璃和熔岩在化学成分上分布十分均匀的重要结论。岩石玻璃和熔岩是由基岩各组成岩石按一定比例混合熔融形成的。它们的主量元素和痕量元素丰度受基岩元素背景值制约。文中根据熔体和靶岩的化学成分,计算了熔岩各组成岩石的百分比。玻璃陨石是地壳岩石受撞击熔融形成的。同一撒布区的玻璃陨石化学成分相近,说明起源于同一源坑;而玻璃陨石化学成分的不同,则说明母岩组成分量的差异。因此,文中通过模拟计算,得出各玻璃陨石的组成源岩。澳大利亚撒布区的玻璃陨石,Al2O3,K2O 和Na2O 与 SiO2及 K2O/Na2O 比值不完全相同,说明澳大利亚撒布区存在着几个不同的源岩和源坑,至少有印支、爪哇、菲律宾和澳大利亚四个相应撞击坑。  相似文献   
32.
The relative importance of mechanical re-mobilisation, hydrothermal dissolution and re-precipitation, and sulphide melting in controlling redistribution of metals during concurrent metamorphism and deformation is evaluated at the middle amphibolite facies Montauban deposit in Canada. As at many other deposits, ductile deformation was important in driving mechanical re-mobilisation of massive sulphides from limb regions into hinge regions of large-scale folds and is thus the most important for controlling the economics of Pb and Zn distribution. Two possible stages of hydrothermally driven re-mobilisation are discussed, each of which produces characteristically different alteration assemblages. Prograde hydrothermal re-mobilisation is driven by pyrite de-sulphidation and concurrent chlorite dehydration and is thus an internally driven process. At Montauban, the H2S-rich fluid generated through this process allowed re-mobilisation of gold into the wall rock, where it was deposited in response to sulphidation of Fe Mg silicates. Retrograde hydrothermal re-mobilisation is an externally driven process, whereby large volumes of fluids from outside the deposit may dissolve and re-precipitate metals, and cause hydration of silicate minerals. This second hydrothermally driven process is not recognised at Montauban. Sulphide melting occurred as temperatures neared the peak metamorphic conditions. Melting initiated in the massive sulphides through arsenopyrite breakdown, and a small volume of melt was subsequently re-mobilised into the wall rock. Trace element partitioning and fractional crystallisation of this melt generated a precious metal-rich fractionate, which remained mobile until well after peak metamorphism. Thus, prograde hydrothermal re-mobilisation and sulphide melting were the most important mechanisms for controlling the distribution of Au and Ag.  相似文献   
33.
34.
35.
祁连山北坡流域冰川物质平衡波动及其对河西水资源的影响   总被引:16,自引:27,他引:16  
祁连山北坡各流域发育有现代冰川 2 166条 ,总面积 13 0 8km2 ,冰储量 60km3,冰川融水补给河流约 8× 10 8m3·a-1,占河西地表总径流量的 11% .近 4 0a来 ,东段石羊河流域冰川物质平衡 (Bn)呈较大负平衡 ,Bn在 - 80~ - 12 0mm间 ;西段的讨勒河、疏勒河和党河流域冰川具正物质平衡 ,Bn在+ 5 0~ + 90mm ;黑河流域的冰川处于过渡区 ,其冰川物质平衡多年平均在 - 4 0~ + 4 0mm间 .冰川物质平衡的变化直接影响着河流径流的变化 ,洪水坝河、党河和昌马河的冰川融水补给率达 3 0~ 4 0 %以上 ,东大河、大渚马河、马营河和讨勒河的补给率在 12 %~ 14 %之间 ,而西营河和梨园河仅有 7%左右 .冰川物质平衡逐年变化显示 ,2 0世纪 5 0~ 70年代冰川以负物质平衡为主 ,80年代开始向正的平衡开始转化 ,90年代以正平衡为主 ,主要是冬季气温上升引起的降雪量增加的结果 .在全球气温变暖情景下 ,东段冰川物质平衡将呈增加的趋势 ,西段冰川物质平衡将呈下降的趋势 ,将使西段以冰川融水补给的河流径流增加 ,而东段石羊河流域径流下降明显 .  相似文献   
36.
The skarns and skarn deposits are widely distributed at home and abroad. The skarn deposits include many kinds of ores and higher ore grade. Some of them are broad in scale. Scientists of ore deposits from different countries have paid and are paying grea…  相似文献   
37.
Yasuhiko  Ohara 《Island Arc》2006,15(1):119-129
Abstract In order to obtain a general view of the mantle process beneath a back‐arc basin spreading ridge, the diversity of peridotite petrology and tectonic occurrences in two back‐arc basin spreading ridges from the Philippine Sea were examined: the Parece Vela Rift and the Mariana Trough. The Parece Vela Basin spreading ridge (Parece Vela Rift) was a physically fast/intermediate‐spreading ridge, although many tectono‐magmatic features resemble those of slow‐ to ultraslow‐spreading ridges. Two unusual features of the Parece Vela Rift further demonstrate the uniqueness of the ridge: full‐axial development of oceanic core complexes and exposure of mantle peridotite at segment midpoints. The Parece Vela Rift yields a lithological assemblage of residual but still fertile lherzolite/harzburgite, plagioclase‐bearing harzburgite and dunite; similar assemblages are reported from the equatorial Mid‐Atlantic Ridge at the Romanche Fracture Zone and the ultraslow‐spreading ridges from the Indian and Arctic Oceans. The tectono‐magmatic characteristics of the Parece Vela Rift suggest that diffuse porous melt flow and pervasive melt–mantle interaction were the important mantle processes there. Globally, this ‘porous melt flow‐type’ mantle process is likely to occur beneath a segment midpoint of the ridge having a thick lithosphere, typically an ultraslow‐spreading ridge. In contrast, the Mariana Trough is a typical slow‐spreading ridge, exposing mantle peridotite at segment ends. The Mariana Trough yields a lithological assemblage of residual harzburgite and veined harzburgite, a common assemblage among the global abyssal peridotite suite. The tectono‐magmatic characteristics of the Mariana Trough suggest that channeled melt/fluid flow and limited melt–mantle interaction are the important mantle processes there, because of the colder wall‐rock peridotite in the segment end. This ‘channeled melt flow‐type’ mantle process is likely to occur in the shallow lithospheric mantle at the segment ends of any spreading ridges.  相似文献   
38.
Melt inclusion and host glass compositions from the easternend of the Southwest Indian Ridge show a progressive depletionin light rare earth elements (LREE), Na8 and (La/Sm)n, but anincrease in Fe8, from the NE (64°E) towards the SW (49°E).These changes indicate an increase in the degree of mantle meltingtowards the SW and correlate with a shallowing of the ridgeaxial depth and increase in crustal thickness. In addition,LREE enrichment in both melt inclusions and host glasses fromthe NE end of the ridge are compatible with re-fertilizationof a depleted mantle source. The large compositional variations(e.g. P2O5 and K2O) of the melt inclusions from the NE end ofthe ridge (64°E), coupled with low Fe8 values, suggest thatmelts from the NE correspond to a variety of different batchesof melts generated at shallow levels in the mantle melting column.In contrast, the progressively more depleted compositions andhigher Fe8 values of the olivine- and plagioclase-hosted meltinclusions at the SW end of the studied region (49°E), suggestthat these melt inclusions represent batches of melt generatedby higher degrees of melting at greater mean depths in the mantlemelting column. Systematic differences in Fe8 values betweenthe plagioclase- and the olivine-hosted melt inclusions in theSW end (49°E) of the studied ridge area, suggest that theplagioclase-hosted melt inclusions represent final batches ofmelt generated at the top of the mantle melting column, whereasthe olivine-hosted melt inclusions correspond to melts generatedfrom less depleted, more fertile mantle at greater depths. KEY WORDS: basalt; melt inclusions; olivine; plagioclase; Southwest Indian Ridge  相似文献   
39.
通过对胶东金成矿区郭家岭岩体中熔融包裹体、含石盐子晶包裹体、CO2三相包裹体和H2O两相包裹体的显微测温,结果表明,该岩体在岩浆结晶晚期发生过高盐度流体与硅酸盐熔体的不混熔过程。根据熔融包裹体均一温度与均一过程的时间,利用相应公式,计算出郭家岭岩体包裹体熔体的粘度和含水量,认为该岩体是从一种高温高粘度的岩浆中结晶成岩的。  相似文献   
40.
高压超高压变质作用中流体—熔体—岩石相互作用   总被引:2,自引:0,他引:2  
在高压超高压变质作用过程中所释放的流体对俯冲板块的演化起着重要作用,与岛弧岩浆活动有着直接联系,随着温度和压力的增加,俯冲板片将发生高压到超高榴辉岩相转变,大量的水将通过含水矿物的消失反应释放出来,这些流体可引起上覆岩圈大规模水化,并促进地幔楔状体的部分熔融,同时,通过流体的向上迁移可将某些组分带入上覆岩石圈板块,并改变其总体组成,许多含水矿物,同变质脉体,高压自形晶体组成的布丁,原生液态包裹体和  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号