首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   38篇
  国内免费   26篇
测绘学   4篇
大气科学   15篇
地球物理   176篇
地质学   257篇
海洋学   58篇
天文学   1篇
综合类   12篇
自然地理   27篇
  2024年   2篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   9篇
  2019年   15篇
  2018年   8篇
  2017年   23篇
  2016年   22篇
  2015年   14篇
  2014年   27篇
  2013年   25篇
  2012年   10篇
  2011年   22篇
  2010年   14篇
  2009年   34篇
  2008年   38篇
  2007年   34篇
  2006年   32篇
  2005年   29篇
  2004年   17篇
  2003年   18篇
  2002年   21篇
  2001年   19篇
  2000年   11篇
  1999年   9篇
  1998年   10篇
  1997年   8篇
  1996年   8篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1992年   4篇
  1991年   10篇
  1990年   5篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
排序方式: 共有550条查询结果,搜索用时 15 毫秒
71.
Transmissivity (T) is one of the most important parameters in groundwater studies, and is generally estimated from pumping tests. T can also be deduced from abundantly available specific-capacity (Q/s) data by using analytical and/or empirical approaches, further upscaled by geostatistical methods. A different, remote sensing based, hydrogeomorphological approach is proposed, to upscale T from point- or well-scale to aquifer-scale, and it is applied to the piedmont alluvial aquifer system of Doon Valley in India. In the first step, Q/s and T data-pairs available from aquifer tests were used to establish an empirical, logarithmic relation. Subsequently, satellite imagery along with available data from published and unpublished maps, literature sources and ground surveys were used to divide the aquifer system into major hydrogeomorphological domains that control the groundwater occurrence and flow. Then, the T data derived from Q/s (using the empirical relation) and that available from pumping tests at well-scale were upscaled to aquifer-scale by averaging the T values within each hydrogeomorphological domain. Such a stratification approach is especially useful in areas where availability of only a few data-pairs of known Q/s and T limit the use of geostatistical techniques. A comparative study of the published empirical relations between Q/s and T in various hydrogeologic settings revealed that the relation obtained for Doon Valley aquifer system is close to that found for a similar alluvial aquifer system in Morocco.  相似文献   
72.
Inthepresentpaper,themultifluidsmodelfortwophaseflowsandthek-ε-Apturbulencemodelareusedtocalculatethethreedimensionalturbulent?..  相似文献   
73.
IINTRODUCTIONByutilizingthenatUralpowerofflow,hydraulicflushingisaneconomicaltechniquetoremovethedepositedsedimentineitherasettlingbasinorareservoir.Inmanyreservoirsaroundtheworld,hydraulicflushinghasbeenprovenasaneffectivemethodtosustainthereservoirstoragecapacity.Hydraulicflushingprocessesmayinvolveboththeprocessesofscouringpreviousdepositsandpassingincomingsediment-ladenflow,suchasgravitycurrent,throughareservoirtobereleased.Inthisarticle,onlytheformercaseisdiscussed.Thekeythinginthef…  相似文献   
74.
移民安置关系社会稳定和经济可持续发展。要采取措施,尽快恢复生产,使搬迁居民达到或超过原有生活水平。移民安置规划主要内容包括实物指标调查、农村移民生产措施规划、居民点规划及专项处理规划等。实物指标调查是移民安置规划设计的第一步基础工作。实物数量、现状的标准等是确定移民安置规模和专业项目复建规划的重要依据。移民安置规划是移民规划设计的核心。农村移民生产安置方案的制定和措施的落实是移民安置规划设计的重点,移民生活安置环境容量的分析与移民安置目标的确定则是移民安置规划的关键。  相似文献   
75.
不同倒角半径下方柱绕流的数值模拟及水动力特性研究   总被引:1,自引:0,他引:1  
为了研究不同倒角半径对方柱绕流特性的影响,采用有限体积法,模拟了雷诺数Re为22 500、倒角半径为0.1D(D为方柱边长的长度)、0.2D和0.3D时方柱的绕流过程。方柱近壁面采用增强壁面函数,模型采用SST k–?湍流模型。根据模拟结果给出了不同倒角半径下方柱的流场涡量图以及阻力系数Cd和升力系数Cl;利用快速傅里叶变换法得到斯托罗哈数St。结果表明,倒角半径的增加改变了方柱的分离点,使得尾流区长度增加,旋涡尺度减小;Cd和Cl的振动幅值呈现先减小后增大的趋势,倒角半径为0.1D和0.2D时方柱受力较小,不存在倒角时方柱受力较大,倒角半径为0.3D时方柱受力最大;随着倒角半径的增加,柱体截面形式越接近圆形,斯托罗哈数逐渐增大,漩涡脱落频率更快。  相似文献   
76.
Raft-type wave energy converter (WEC) is a multi-mode wave energy conversion device, using the relative pitch motion to drive its hydraulic power take-off (PTO) units for capturing energy from the ocean waves. The hydraulic PTO unit as its energy conversion module plays a significant role in storing large qualities of energy and making the output power smooth. However, most of the previous investigations on the raft-type WECs treat the hydraulic PTO unit as a linear PTO unit and do not consider the dynamics of the hydraulic circuit and components in their investigations. This paper is related to a two-raft-type WEC consisting of two hinged rafts and a hydraulic PTO unit. The aim of this paper is to make an understanding of the dynamics of the hydraulic PTO unit and how these affect the performance of the two-raft-type WEC. Therefore, a combined hydrodynamic and hydraulic PTO unit model is proposed to investigate and optimize the performance of the two-raft-type WEC; and based on the simulation of the combined model, the relationships between the optimal power capture ability, the optimal magnitude of the hydraulic PTO force and the wave states are numerically revealed. Results show that an approximately square wave type hydraulic PTO force is produced by the hydraulic PTO unit, which causes the performance of the two-raft-type WEC not to be sinusoidal and the energy capturing manner different from that of the device using a linear PTO unit; moreover, there is an optimal magnitude of the hydraulic PTO force for obtaining an optimal power capture ability, which can be achieved by adjusting the parameters of the hydraulic PTO unit; in regular waves, the optimal power capture ability as well as the optimal magnitude of the hydraulic PTO force normalized by the wave height presents little relationship with the wave height, mainly depends on the wave period; in irregular waves, the trends of the optimal power capture ability and the normalized optimal magnitude of the hydraulic PTO force against the peak wave periods at different significant wave heights are generally identical and show a good correlation. All means that the hydraulic PTO unit of the two-raft-type WEC can be tuned to the wave states, and these would provide a valuable guidance for the optimal design of its hydraulic PTO unit.  相似文献   
77.
The origin and movement of groundwater are the fundamental questions that address both the temporal and spatial aspects of ground water run and water supply related issues in hydrological systems. As groundwater flows through an aquifer, its composition and temperature may variation dependent on the aquifer condition through which it flows. Thus, hydrologic investigations can also provide useful information about the subsurface geology of a region. But because such studies investigate processes that follow under the Earth's shallow, obtaining the information necessary to answer these questions is not continuously easy. Springs, which discharge groundwater table directly, afford to study subsurface hydrogeological processes.The present study of estimation of aquifer factors such as transmissivity (T) and storativity (S) are vital for the evaluation of groundwater resources. There are several methods to estimate the accurate aquifer parameters (i.e. hydrograph analysis, pumping test, etc.). In initial days, these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory. The simultaneous information on the hydraulic behavior of the well (borehole) that provides on this method, the reservoir and the reservoir boundaries, are important for efficient aquifer and well data management and analysis. The most common in-situ test is pumping test performed on wells, which involves the measurement of the fall and increase of groundwater level with respect to time. The alteration in groundwater level (drawdown/recovery) is caused due to pumping of water from the well. Theis (1935) was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer. It is essential to know the transmissivity (T = Kb, where b is the aquifer thickness; pumping flow rate, Q = TW (dh/dl) flow through an aquifer) and storativity (confined aquifer: S = bSs, unconfined: S = Sy), for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer. The determination of aquifer's parameters is an important basis for groundwater resources evaluation, numerical simulation, development and protection as well as scientific management. For determining aquifer's parameters, pumping test is a main method. A case study shows that these techniques have been fast speed and high correctness. The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.  相似文献   
78.
Substrate conditions are considered crucial for the survival of juvenile freshwater pearl mussels (Margaritifera margaritifera L.) – and therefore for the recovery of overaged populations in danger of extinction – as fine sediments can clog the interstitial habitat and hamper water and oxygen circulation to the juveniles. Watercourses and their bed sediments must meet two seemingly diametrically opposite requirements in order to offer the freshwater pearl mussel appropriate habitats: stable substrates for all live stages and an unclogged interstitial for the juveniles. As only few scientific publications deal with subsurface conditions in pearl mussel brooks, the present preliminary study tries to contribute to this topic by compiling a variety of chemical and hydromorphological data from several Austrian watercourses with distinctly different characteristics. It was clearly shown that discharge patterns, hydraulic pressure, water depths and flow velocities affect both river bed stability and the perfusion of the hyporheic zone: In an artificial millrace with permanent low flow conditions and a permanently stable substrate a distinct barrier was detected within the first 5 cm substrate depth that totally blocks the interchange between surface and interstitial water, resulting in an accumulation of substances of all kinds, among them potentially toxic substances. Such a barrier was also found to be building up in several natural watercourses, clearly indicating the danger of adverse land-use and of long-term low flow conditions in smaller brooks (given that the local decrease in precipitation, proven in long-term studies, proceeds). Significant differences in substrate concentrations in the interstitial water were detected between watercourses, whereas chemical conditions in the surface water exhibited no differences at all. An accompanying biomonitoring study showed high survival rates all over the study area, indicating the suitability of juvenile freshwater pearl mussels as bioindicators in terms of surface water, but not of interstitial water.  相似文献   
79.
An inverse method is developed to simultaneously estimate multiple hydraulic conductivities, source/sink strengths, and boundary conditions, for two-dimensional confined and unconfined aquifers under non-pumping or pumping conditions. The method incorporates noisy observed data (hydraulic heads, groundwater fluxes, or well rates) at measurement locations. With a set of hybrid formulations, given sufficient measurement data, the method yields well-posed systems of equations that can be solved efficiently via nonlinear optimization. The solution is stable when measurement errors are increased. The method is successfully tested on problems with regular and irregular geometries, different heterogeneity patterns and variances (maximum Kmax/Kmin tested is 10,000), and error magnitudes. Under non-pumping conditions, when error-free observed data are used, the estimated conductivities and recharge rates are accurate within 8% of the true values. When data contain increasing errors, the estimated parameters become less accurate, as expected. For problems where the underlying parameter variation is unknown, equivalent conductivities and average recharge rates can be estimated. Under pumping (and/or injection) conditions, a hybrid formulation is developed to address these local source/sink effects, while different types of boundary conditions can also exert significant influences on drawdowns. Local grid refinement near wells is not needed to obtain accurate results, thus inversion is successful with coarse inverse grids, leading to high computation efficiency. Furthermore, flux measurements are not needed for the inversion to succeed; data requirement of the method is thus not much different from that of interpreting classic well tests. Finally, inversion accuracy is not sensitive to the degree of nonlinearity of the flow equations. Performance of the inverse method for confined and unconfined aquifer problems is similar in terms of the accuracy of the estimated parameters, the recovered head fields, and the solver speed.  相似文献   
80.
The paper presents a semi-analytical method for predicting the flow rate hydrograph due to a hypothetical sudden and total dam failure in a natural valley. The method generalizes the approach proposed by Hunt for the dam-break problem in a rectangular frictionless sloping channel to a valley with a cross-section area expressed by a power-law function of water depth, in order to take into account the most common shapes of natural valleys. The parameters of the deriving model can be set by exploiting data usually available concerning the dam section geometry and the reservoir storage-depth curve. The application of the technique to three different reservoirs is discussed. The results show that the flow rate hydrographs obtained at the dam site agree with the ones calculated by means of a finite volume numerical code based on two-dimensional shallow water equations. The method requires moderate computational and data collecting effort, so it can be regarded as a useful alternative to other procedures commonly adopted in the practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号