首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12120篇
  免费   2675篇
  国内免费   6472篇
测绘学   37篇
大气科学   1篇
地球物理   285篇
地质学   19647篇
海洋学   105篇
综合类   1050篇
自然地理   142篇
  2024年   120篇
  2023年   388篇
  2022年   501篇
  2021年   544篇
  2020年   525篇
  2019年   604篇
  2018年   525篇
  2017年   689篇
  2016年   817篇
  2015年   808篇
  2014年   1098篇
  2013年   882篇
  2012年   1107篇
  2011年   1004篇
  2010年   928篇
  2009年   785篇
  2008年   727篇
  2007年   810篇
  2006年   756篇
  2005年   669篇
  2004年   677篇
  2003年   594篇
  2002年   579篇
  2001年   675篇
  2000年   620篇
  1999年   583篇
  1998年   580篇
  1997年   556篇
  1996年   491篇
  1995年   383篇
  1994年   327篇
  1993年   249篇
  1992年   207篇
  1991年   158篇
  1990年   90篇
  1989年   79篇
  1988年   58篇
  1987年   36篇
  1986年   18篇
  1985年   12篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
741.
This paper is concerned with an example of quantitative modelling of orebody formation as a guide to reducing the risk for future mineral exploration. Specifically, the paper presents a detailed 3–D numerical model for the formation of the Century zinc deposit in northern Queensland. The model couples fluid flow with deformation, thermal transport and chemical reactions. The emphasis of the study is a systems approach where the holistic mineralising system is considered rather than concentrating solely on the mineral deposit. In so doing the complete plumbing system for mineralisation is considered with a view to specifying the critical conditions responsible for the ore deposit occurring where it does and having the size and metal grades that are observed. The numerical model is based on detailed geological, tectonic, isotopic and mineralogical data collected over the past 20 years. The conclusions are that the Century zinc deposit is located where it is because of the following factors: (i) a thermal anomaly is associated with the Termite Range Fault due to advection of heat from depth by fluid flow up the Termite Range Fault; (ii) bedding‐plane fissility in the shale rocks hosting the Century zinc deposit has controlled the wavelength and nature of D1 folding in the vicinity of the deposit and has also controlled increases in permeability due to hydrofracture of the shales; such hydrofracture is also associated with the production of hydrocarbons as these shales passed through the ‘oil‐window’; (iii) Pb–Zn leached from crustal rocks in the stratigraphic column migrated up along faults normal to the Termite Range Fault driven by topographic relief associated with inversion at the end of the Isan Orogeny; these fluids mixed with H2S derived at depth moving up the Termite Range Fault to mix with the crustal fluids to precipitate Pb–Zn in a plume downstream from the point of mixing. Critical factors to be used as exploration guides are high temperatures, carbonaceous fissile shales now folded into relatively tight D1 folds, fault‐controlled plumbing systems that enable fluid mixing, depletion of metals upstream of the deposit and,in particular,a very wide Fe‐depletion halo upstream of the deposit.  相似文献   
742.
Stress mapping is a numerical modelling technique used to determine the distribution and relative magnitude of stress during deformation in a mineralised terrane. It is based on the general principle that fluid flow in the Earth's crust is primarily related to pressure gradients. It is best applied to epigenetic hydrothermal mineral deposits, where fluid flow and fluid flux are enhanced in dilational sections of structures and in sites of enhanced rock permeability due to high fracture density. These are defined by sites of low minimum principal stress (σ3). Most stress mapping is carried out in two dimensions in plan view using geological maps. This is suitable for terranes with steeply dipping lithostratigraphy and structures in which the distribution of mineral deposits is largely controlled by fault structures portrayed on the maps. However, for terranes with gently dipping sequences and structures, and for situations where deposits are sited in and near the hinges of complex fold structures, stress mapping in cross‐section is preferable. The effectiveness of stress mapping is maximised if mineralisation was late in the evolutionary history of the host terrane, and hence the structural geometry of the terrane and contained deposits were essentially that expressed today. The orientation of syn‐mineralisation far‐field stresses must also be inferred. Two examples of orogenic gold deposits, which meet the above criteria, are used to illustrate the potential of stress mapping in cross‐section. Sunrise Dam, located in the Archaean Yilgarn Craton, is a lode‐gold deposit sited in a thrust‐fold belt. Stress mapping illustrates the heterogeneity of stress distribution in the complex structural geometry of the deposit, and predicts the preferential siting of ore zones around the intersections of more steeply dipping, linking thrusts and banded iron‐formation units, and below the controlling more gently dipping basal thrust, the Sunrise Shear. The Howley Anticline in the Pine Creek block hosts several Palaeoproterozoic gold deposits, sited in complex anticlinal structures in greywacke sequences. Stress mapping indicates that gold ores should develop in the hinge zones of symmetrical anticlines, in the hinge zones and more steeply dipping to overturned limbs of asymmetric anticlines, and in and around thrusts in both anticlines and parasitic synclines. The strong correlation between the predictions of the stress mapping, based on the distribution of low σ3, and the location of gold ores emphasises the potential of stress mapping in cross‐section, not only as an exploration tool for the discovery of additional resources or deposits, but also as a test of geological models. Knowledge of the potential siting of gold ores and their probable orientations also provides a guide to drilling strategies in both mine‐ and regional‐scale exploration.  相似文献   
743.
The Corinthia lode‐gold deposit in amphibolite‐facies greenstone belt rocks in the Southern Cross Province of the Archaean Yilgarn Block contains a largely undeformed pegmatite dyke emplaced during the last phases of movement along the Fraser's‐Corinthia shear zone. Gold mineralization and shear zone development were synchronous, and a Pb‐Pb isochron age of 2620 ±6 Ma for pegmatite emplacement either indirectly dates mineralization, or places a minimum age constraint on the timing of mineralization. This age is in accord with a broadly synchronous dominant episode of Archaean lode‐gold mineralization throughout the Yilgarn Block.  相似文献   
744.
The Ediacara mineral field is situated 30 km W of Beltana on the western margins of the Flinders Ranges, South Australia, and consists of silver‐lead and copper deposits in lower Cambrian carbonate rocks that contain anomalous base‐metal contents throughout the Adelaide Geosyncline. The lower Cambrian rocks, which consist of the basal Parachilna Formation and overlying Ajax Limestone, rest disconformably on the Precambrian, and at Ediacara occupy a shallow N‐S elongate syncline near the hinge zone of the Adelaide Geosyncline. The main primary ore minerals of the silver‐lead mineralization are galena and pyrite, with very minor chalcopyrite and sphalerite, and rare tetrahedrite and pearceite. The gangue consists mainly of silica (both chalcedony and quartz), with minor dolomite and rare barite. The mineralization is stratabound and occurs in conformable zones, the lowest of which commences about 30–50 m above the base of the Cambrian sequence. The host to the silver‐lead mineralization, the Ajax Limestone, can be subdivided into three units which represent a set of lithologies, structures and organic traces indicative of a shallow near‐shore carbonate environment. The silver‐lead mineralization is mainly present in sandy and laminated dolomites which were deposited in an environment ranging from sub‐tidal to bar and channel and tidal flat, respectively. Four types of mineralization have been recognized; disseminated sulphides of syngenetic and/or diagenetic origin and epigenetic concentrations along stylolites, in veins and as breccia fillings. Post‐depositional solution activity has affected a large proportion of the carbonate sequence. The effects of this activity range from stylolites through stylobreccias to solution collapse breccias. The epigenetic concentrations of mineralizations have apparently been formed by the remobilization of the disseminated sulphides during solution activity. The ore and gangue minerals of the epigenetic mineralization display both euhedral forms and distinct colloform banding, and framboidal textures have also been observed in both pyrite and galena. There is evidence of repeated episodic precipitation and no simple paragenetic sequence can be recognized. Fluid inclusions in silica and dolomite associated with the epigenetic mineralization have homogenization temperatures of 159 to 199°C and freezing temperatures that indicate the fluids to be saline brines containing NaCl with CaCl2 and/or MgCl2. Sulphur isotope analyses show a range of 834S values from ‐12.5 to +8.6 per mil, with no evidence of significant differences between the four types of mineralization. The data suggest deposition of the disseminated sulphides as a result of biological reduction of seawater sulphate in a system partially open with respect to sulphate supply. Subsequent remobilization of sulphides apparently involved little or no sulphur isotope fractionation. The Ediacara silver‐lead deposits have many features in common with Mississippi Valley‐type lead‐zinc deposits and appear to have similarities in terms of genesis, in that the epigenetic mineralization has been formed as a result of post‐depositional solution activity during diagenesis in a sedimentary basin. The scale of transport of the metals deposited as the epigenetic mineralization at Ediacara appears, however, to have been very much less than that of the metals in other Mississippi Valley‐type deposits.  相似文献   
745.
Abstract

During the past 50 years, many geological and ore-deposit investigations have led to the discovery of the Fe–P–(Ti)-oxide deposits associated with mafic–ultramafic–carbonatite complexes in the Kuluketage block, northeastern Tarim Craton. In this paper, we discuss the genetic and ore-forming ages, tectonic setting, and the genesis of these deposits (Kawuliuke, Qieganbulake and Duosike). LA-ICP-MS zircon U–Pb dating yielded a weighted mean 206Pb/238U ages of 811?±?5?Ma, 811?±?4?Ma, and 840?±?5?Ma for Kawuliuke ore-bearing pyroxenite, Qieganbulake gabbro and Duosike ore-bearing pyroxenite, respectively. The CL images of the Kawuliuke apatite grains show core–rim structure, suggesting multi-phase crystallisation, whereas the apatite grains from Qieganbulake and Dusike deposits do not show any core–rim texture, suggesting a single-stage crystallisation. LA-ICP-MS apatite 207Pb-corrected U–Pb dating provided weighted mean 206Pb/238U ages of 814?±?21?Ma and 771?±?8?Ma for the Kawuliuke ores, and 810?±?7?Ma and 841?±?7?Ma for Qieganbulake and Duosike ores, respectively. The core–rim texture in apatite by CL imaging as well as two different ore-forming ages in the core and rim of the apatite indicate two metallogenic events for the Kawuliuke deposit. The first metallogenic period was magmatic in origin, and the second period was hydrothermal in origin. The initial ore-forming age of the Kawuliuke Fe–P–Ti mineralisation was ca 814?Ma and the second one was ca 771?Ma. On the other hand, the ore-forming ages of the Qieganbulake and Duosike deposits were ca 810?Ma and ca 841?Ma, respectively. Qieganbulake and Duosike deposits were of magmatic origin. Combined with previous geochronological data and the research on the tectonic background, we infer that the Kawuliuke, Qieganbulake and Duosike Fe–P–(Ti)-oxide deposits were formed in a subduction-related tectonic setting and were the product of subduction-related magmatism.  相似文献   
746.
华南型块状硫化物矿床中的胶黄铁矿及其退火作用   总被引:7,自引:0,他引:7  
华南型块状硫化物矿床中胶黄铁矿的退火过程从早到晚可分成三个阶段:原始晶化变胶体阶段、不等粒变晶生长阶段和颗粒界面调整阶段。不同阶段的矿石各具特征性的结构,反映了燕山期侵入活动对于先存胶黄铁矿的不同程度热效应。  相似文献   
747.
粒级、形态含量分布模拟的基本原理就是首先按对数正态分布产生出自然金的短边和长边,再将二者的乘积分别按短边和二者的比值进行统计归类。用计算机对自然金的粒级形态进行模拟可显著提高粒级、形态计算的精确度,使之更符合客观情况,同时也可节省工时。  相似文献   
748.
本文根据国内外文献资料,提出前寒武纪富铀矿床的形成与碱交代作用在空间上、成因上蕾切相关的认识,并根据碱性热水溶液的性质将前寒武纪富铀矿床分为钠交代型和钾交代型。同时,简述了两种类型矿床的主要特征,成矿地质条件及机理。  相似文献   
749.
木文指出:303地区铀矿成矿的物源主要来自盆地北部、东北部、西北部的碳硅泥岩和含矿主岩本身;有机碳是铀的主要沉淀剂和富集剂;矿化形成于氧化-还原过渡带和弱还原带中;成矿年龄为124—107Ma,属成岩成矿为主的层控矿床。  相似文献   
750.
本文从地质地球化学角度对峪耳崖金矿床进行了详细研究,认为该金矿是典型的岩浆热浪型脉状金矿床,金矿与峪耳崖花岗岩(即矿床的主要围岩)为同源岩浆作用的产物,而其源岩物质可能来自深部地壳。黄铁矿中Co/Ni比为1.58,石英中La/Yb比为2.95,δ~(34)S_∑为+2.6‰,δ~(13)O水为+7.03‰,δD为-88.4‰,δ~(13)C为-4.18‰,成矿温度为305~343℃,pH为6.2~6.8,石英包裹体成分中Cl~->F~-、Na~+>K~+,金可能是以Na[AuCl_2],Na[Aucl_4]或Na[AuS]等络合物形式迁移。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号