首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   2篇
  国内免费   2篇
测绘学   2篇
大气科学   1篇
地球物理   7篇
地质学   12篇
海洋学   3篇
天文学   2篇
自然地理   2篇
  2018年   1篇
  2017年   2篇
  2014年   2篇
  2013年   2篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1990年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
11.
建立了 3种板块的绝对运动模型。即假定太平洋海岭相对固定于下地幔而得到的PRF -ITRF2 0 0 0的板块绝对运动模型 ;根据热点资料推得的HS2 -ITRF2 0 0 0板块绝对运动模型和由ITRF2 0 0 0得到的NNR -ITRF2 0 0 0无整体旋转的板块绝对运动模型。比较了这 3种板块绝对运动模型的利弊。综合起来看PRF -ITRF2 0 0 0可能是一个比较合适的基于空间数据的绝对参考架  相似文献   
12.
A new conceptual model of mantle convection is constructed for consideration of the origin of hotspot plumes, using recent evidence from seismology, high-pressure experiments, geodynamic modeling, geoid inversion studies, and post-glacial rebound analyses. This conceptual model delivers several key points. Firstly, some of the small-scale mantle upwellings observed as hotspots on the Earth's surface originate at the base of the mantle transition zone (MTZ), in which the Archean granitic continental material crust (TTG; tonalite-trondhjemite-granodiorite) with abundant radiogenic elements is accumulated. Secondly, the TTG crust and the subducted oceanic crust that have accumulated at the base of MTZ could act as thermal or mechanical insulators, leading to the formation of a hot and less viscous layer just beneath the MTZ; which may enhance the instability of plume generation at the base of the MTZ. Thirdly, the origin of some hotspot plumes is isolated from the large low shear-wave velocity provinces (LLSVPs) under Africa and the South Pacific. I consider that the conceptual model explains why almost all the hotspots around Africa are located above the margins of the African LLSVP. Because a planetary-scale trench system surrounding a “Pangean cell” has been spatially stable throughout the Phanerozoic, a large amount of the oceanic crustal layer is likely to be trapped in the MTZ under the Pangean cell. Therefore, under Africa, almost all of the hotspot plumes originate from the base of the MTZ, where a large amount of TTG and/or oceanic crusts has accumulated. This conceptual model may explain the fact that almost all the hotspots around Africa are located on margins above the African LLSVP. It is also considered that some of the hotspot plumes under the South Pacific thread through the TTG/oceanic crusts accumulated around the bottom of the MTZ, and some have their roots in the South Pacific LLSVP while others originate from the MTZ. The numerical simulations of mantle convection also speculate that the Earth's mantle convection is not thermally double-layered at the ringwoodite to perovskite + magnesiowüstite (Rw  Pv + Mw) phase boundary, because of its gentle negative Clapeyron slope. This is in contrast with some traditional images of mantle convection that have independent convection cells between the upper and lower mantle. These numerical studies speculate that the generation of stagnant slab at the base of the MTZ (as seismically observed globally) may not be due to the negative Clapeyron slope, and may instead be related to a viscosity increase (i.e., a viscosity jump) at the Rw  Pv + Mw phase boundary, or to a chemically stratified boundary between the upper and the lower mantle, as suggested by a recent high-pressure experiment.  相似文献   
13.
The study focuses on the flexural down-warping of oceanic crust related to the Early Cretaceous hotspot volcanic chain in offshore East India, drawing from robust reflection seismic coverage of the 85°E Ridge and associated moats and arches. Seismic data image three moat-filling units including the basal pelagic, landslide and ponded units, representing the sedimentary record preceding, coeval and postponing flexure. Their stacking patterns allow one to understand the flexural history of the oceanic crust reacting to the volcanic load, in space and time. The flexural history of the oceanic crust can be divided into four stages. The first stage is the brittle faulting-assisted flexure reacting to the appearance of the load. It has a short wavelength and controls the development of moat undergoing deposition of the landslide unit. Then follows the long-wavelength flexure, when the arch starts to develop. The flexural arch formation prevents the landslide unit from covering it, while the moat keeps subsiding. The third flexure stage is a short-wavelength deformation when the moat and arch subside together. Accordingly, the syn-flexural landslide unit records an initial rapid and a later slower subsidence. The fourth flexure stage is characterized by the passive infill of moat by sediments of ponded unit, although limited isostatic adjustments can occur, accompanied by mass wasting.  相似文献   
14.
The first systematic rock sampling of volcanoes along the Galápagos hotspot tracks (the aseismic Cocos, Carnegie, Malpelo and Coiba ridges and adjacent seamounts) in the area between the Galápagos Islands and Central and South America was carried out on R/V Sonne cruise 144-3. Guyot-shaped seamounts, paleo-beach or intertidal wave-cut platform deposits, the structure and texture of volcanic rocks, and low sulfur contents of fresh glasses dredged at these volcanoes imply that ocean islands existed continuously above the Galápagos hotspot for at least the past 17 million years. These new data significantly extend the time period over which the unique endemic Galápagos fauna could have evolved, providing a complete solution to the long-standing enigma of the evolution of Galápagos land and marine iguanas.  相似文献   
15.
地幔对流对全球岩石圈应力产生与分布的作用   总被引:16,自引:4,他引:12       下载免费PDF全文
利用动力学模拟方法研究地幔对流对于大尺度岩石圈内部应力场形成的作用. 地幔物质内部的密度横向非均匀及表面板块运动引起地幔流动,并在岩石圈底部产生一个应力场. 该应力场作为面力将造成岩石圈本身变形,从而产生岩石圈内部的应力分布. 模拟计算结果表明,大部分俯冲带及大陆碰撞带区域应力均呈现挤压特征,如环太平洋俯冲带及印度-欧亚碰撞带等;而东太平洋洋脊、大西洋洋脊及东非裂谷处应力状态均表现为拉张;并且绝大多数热点位置处于应力拉张区域,这与目前对全球构造应力状态的理解是一致的. 计算的岩石圈内部最大水平主压应力的方向与观测表现出相当的一致,其结果总体上吻合得较好,然而在局部区域(例如西北太平洋的俯冲带、青藏高原等地区)存在着较大的差异. 研究表明,地幔对流是造成岩石圈内部大尺度应力状态及分布的一个重要因素.  相似文献   
16.
New geochemical data from the Cocos Plate constrain the composition of the input into the Central American subduction zone and demonstrate the extent of influence of the Galápagos Hotspot on the Cocos Plate. Samples include sediments and basalts from Ocean Drilling Program (ODP) Site 1256 outboard of Nicaragua, gabbroic sills from ODP Sites 1039 and 1040, tholeiitic glasses from the Fisher Ridge off northwest Costa Rica, and basalts from the Galápagos Hotspot Track outboard of Central Costa Rica. Site 1256 basalts range from normal to enriched MORB in incompatible elements and have Pb and Nd isotopic compositions within the East Pacific Rise MORB field. The sediments have similar 206Pb/204Pb and only slightly more radiogenic 207Pb/204Pb and 208Pb/204Pb isotope ratios than the basalts. Altered samples from the subducting Galápagos Hotspot Track have similar Nd and Pb isotopic compositions to fresh Galápagos samples but have significantly higher Sr isotopic composition, indicating that the subduction input will have a distinct geochemical signature from Galápagos-type mantle material that may be present in the wedge beneath Costa Rica. Gabbroic sills from Sites 1039 and 1040 in East Pacific Rise (EPR) crust show evidence for influence of the Galápagos Hotspot ∼100 km beyond the morphological hotspot track.  相似文献   
17.
The Hawaiian–Emperor Seamount chain records the motion of the Pacific Plate relative to the Hawaiian mantle hotspot for 80 m.y. A notable feature of the chain is the pronounced bend at its middle. This bend had been widely credited to a change in plate motion, but recent research suggests a change in hotspot motion as an alternative. Existing paleomagnetic data from the Emperor Chain suggest that the hotspot moved south during the Late Cretaceous and Early Tertiary, but reached its current latitude by the age of the bend. Thus, data from area of the bend are important for understanding changes in plume latitude. In this study, we analyze the magnetic anomalies of five seamounts (Annei, Daikakuji-W, Daikakuji- E, Abbott, and Colahan) in the region of the bend. These particular seamounts were chosen because they have been recently surveyed to collect multibeam bathymetry and magnetic data positioned with GPS navigation. Inversions of the magnetic and bathymetric data were performed to determine the mean magnetization of each seamount and from these results, paleomagnetic poles and paleolatitudes were calculated. Three of the five seamounts have reversed magnetic polarities (two are normal) and four contain a small volume of magnetic polarity opposite to the main body, consistent with formation during the Early Cenozoic, a time of geomagnetic field reversals. Although magnetization inhomogene ties can degrade the accuracy of paleomagnetic poles calculated from such models, the seamounts give results consistent with one another and with other Pacific paleomagnetic data of approximately the same age. Seamount paleolatitudes range from 13.7 to 23.7, with an average of 19.4 ± 7.4 (2σ). These values are indistinguishable from the present-day paleolatitude of the Hawaiian hotspot. Together with other paleomagnetic and geologic evidence, these data imply that the Hawaiian hotspot has moved little in latitude during the past 45 m.y.  相似文献   
18.
Global P-wave tomography: On the effect of various mantle and core phases   总被引:4,自引:0,他引:4  
In this work, many global tomographic inversions and resolution tests are carried out to investigate the influence of various mantle and core phase data from the International Seismological Center (ISC) data set on the determination of 3D velocity structure of the Earth's interior. Our results show that, when only the direct P data are used, the resolution is good for most of the mantle except for the oceanic regions down to about 1000 km depth and for most of the D″ layer, and PP rays can provide a better constraint on the structure down to the middle mantle, in particular for the upper mantle under the oceans. PcP can enhance the ray sampling of the middle and lower mantle around the Pacific rim and Europe, while Pdiff can help improve the spatial resolution in the lowermost mantle. The outer core phases (PKP, PKiKP and PKKP) can improve the resolution in the lowermost mantle of the southern hemisphere and under oceanic regions. When finer blocks or grid nodes are adopted to determine a high-resolution model, pP data are very useful for improving the upper mantle structure. The resulting model inferred from all phases not only displays the general features contained in the previous global tomographic models, but also reveals some new features. For example, the image of the Hawaiian mantle plume is improved notably over the previous studies. It is imaged as a continuous low velocity anomaly beneath the Hawaiian hotspot from the core-mantle boundary (CMB) to the surface, implying that the Hawaiian mantle plume indeed originates from the CMB. Low-velocity anomalies along some mid-oceanic ridges extend down to about 600 km depth. Our results suggested that later seismic phases are of great importance in better understanding the structure and dynamics of the Earth's interior.  相似文献   
19.
Fluid dynamical simulations were carried out in order to investigate the effect of the large-scale mantle flow field and the depth of the plume source on the structure of the Iceland plume through time. The time-dependent location and shape of the plume in the Earth's mantle was calculated in a global model and it was refined in the upper mantle using a 3D Cartesian model box. Global flow was computed based on density heterogeneities derived from seismic tomography. Plate motion history served as a velocity boundary condition in both models. Hotspot tracks of the plume conduits and the plume head were calculated and compared to actual bathymetry of the North Atlantic. If a plume source in the lowermost mantle is assumed, the calculated surface position of the plume conduit has a southward component of motion due to southward flow in the lower mantle. Depending on tomography model, assumed plume age and buoyancy the southward component is more or less dominating. Plume models having a source at the 660 km discontinuity are only influenced by flow in the upper mantle and transition zone and hence rather yield westward hotspot motion. Many whole-mantle plume models result in a V-shaped track, which does not match the straight Greenland–Iceland–Faroe ridge. Models without strong southward motion, such as for a plume source at 660 km depth, match actual bathymetry better. Plume tracks were calculated from both plume conduits and plume heads. A plume head of 120 K anomalous temperature gives the best match between plume head track and bathymetry.  相似文献   
20.
植被结构及太阳/观测角度对NDVI的影响   总被引:1,自引:0,他引:1  
在文献[1]中作者建立了计算多组分植被方向反射系数(BRF)的综合解析模型。本文采用该模型研究植被空间结构对常用的归一化植被指数(NDVI)的影响,文中讨论了NDVI与叶(或植被其它组分)角分布(LAD)、植被组分(如叶片)的特征尺度和它们在空间的散布方式,以及非叶器官面积在总面积中所占比例间的依赖关系,同时给出了NDVI随太阳/观测角度的变化情况。结果表明即使在叶面积指数(LAI)固定不变时,冠层结构及植被组分光学性质的空间非均匀性对NDVI的大小及角分布也有十分显著的影响。通常NDW随角度的变化是很大的,如果植被不同组分的光学性质差异很大,且事先不知道它们的空间散布方式时,那么利用DNVI就无法准确地估算出LAI。但是对于组分随机分布的植被,利用远离“热点”区域的光谱资料可以使冠层其它结构参数的影响减至最小。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号