首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   14篇
  国内免费   78篇
大气科学   2篇
地球物理   11篇
地质学   172篇
海洋学   6篇
综合类   1篇
自然地理   2篇
  2024年   3篇
  2023年   2篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   9篇
  2018年   9篇
  2017年   12篇
  2016年   6篇
  2015年   16篇
  2014年   12篇
  2013年   11篇
  2012年   17篇
  2011年   2篇
  2010年   4篇
  2009年   8篇
  2008年   6篇
  2007年   9篇
  2006年   10篇
  2005年   5篇
  2004年   8篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1985年   3篇
  1978年   1篇
排序方式: 共有194条查询结果,搜索用时 19 毫秒
91.
黄倩雯 《地质与勘探》2019,55(5):1185-1201
秦岭岩群(杂岩)是北秦岭构造带主要的构造岩石单元之一,对研究华北板块和扬子板块之间的构造演化具有重要意义。本文对秦岭岩群杂岩中的4个侵入体(包括片麻状变辉长岩、糜棱岩化花岗岩、片麻状石英闪长岩和片麻状花岗岩)进行了地球化学、锆石U-Pb年代学和Lu-Hf同位素分析,以探讨北秦岭在古生代的岩浆作用。结果表明4个样品富集LREE,亏损HREE;片麻状变辉长岩的锆石年龄集中在481Ma~471Ma,糜棱岩化花岗岩锆石年龄具有486Ma的强峰,代表早古生代岩浆热事件;片麻状石英闪长岩和片麻状花岗岩的锆石年龄分别在417Ma~384Ma之间和400Ma~388Ma之间,代表秦岭岩群(杂岩)在晚古生代早期经历的岩浆活动事件。片麻状变辉长岩的εHf(t)值在-5.64~-3.32之间,代表其原岩来自古老地壳;片麻状石英闪长岩和片麻状花岗岩的εHf(t)值均为正值,分别在7.62~11.84和7.50~10.70之间变化,表明其原岩来自亏损地幔。  相似文献   
92.
川西拉拉含矿镁铁质层状岩体位于扬子地块西缘,构造环境复杂,关于其成因机制及岩浆源区的问题至今仍缺乏系统的研究。文章针对该岩体七个岩相带,进行了主、微量元素和Sr-Nd同位素分析,结果表明,七个岩相带(YWS-1—YWS-7)是岩浆经历不同的演化过程而形成的。其中,第五相带SiO2含量高(42.95%~44.07%),MgO含量低(1.62%~1.89%),稀土总量明显偏低(295.32×10-6~366.36×10-6),Cr、Ni含量偏低,87Sr/86Sr为0.7391~0.7812,是受到地壳混染所致;其它相带Mg#值高(0.54~0.74),稀土总量偏高(672.53×10-6~986.66×10-6),87Sr/86Sr为0.7087~0.7097,显示岩石圈地幔源区特征。结合区域地质背景分析,认为该层状岩体产生于大陆裂谷构造环境,岩浆来源于岩石圈地幔源区,演化过程中结晶分异和多次脉动作用相伴。这一活动过程与新元古时期扬子板块西缘的超级地幔柱活动有关。   相似文献   
93.
对分布在攀西古裂谷带内的禄丰县鸡街和大向坪超基性碱性环状杂岩体中霞辉岩,以及西昌太和层状辉长岩等两类岩石进行全岩^40Ar-^39Ar坪年龄测定,结果表明鸡街岩体和大向坪岩体中霞辉岩年龄范围在214~193Ma,相当于晚三叠世,属于印支期。总体上,超基性碱性环状杂岩的侵位时间略晚于含矿辉长岩;太和层状辉长岩^40Ar-^39Ar坪年龄,由于过剩Ar等原因的扰动,使其年龄值远远高于成岩年龄。暗示全岩或辉石单矿物等不适合作为攀西地区层状辉长岩定年的对象。  相似文献   
94.
In this paper, an idealized model of the steady‐state phase of the flow in a vertical conduit leading to a sand volcano eruption is developed from first principles. The model assumes that a sand–water mixture flows upwards, driven by an overpressure at the base of a vertical cylindrical conduit (or a two‐dimensional fracture) and opposed by gravity, viscous resistance and turbulent drag. The conditions for flow are analysed in detail, and the mechanisms controlling the eruption rates are studied quantitatively. The flow predictions are in accordance with our observations of analogous vigorous sand eruptions at deepwater oil fields. For sufficiently high flow velocities (u > 10uT) and small sand fractions (s < 0·2), the flow may be well mixed and homogeneous. If these conditions are not met, the flow may either become two phase or does not develop. Combining geological considerations with the steady homogeneous model, it is possible to predict the behaviour of the vigorous quasi‐steady stage of a sand volcano eruption. It is shown that, based on the average density of the overlying sediments, there are a range of overpressures for which sand volcanoes may develop.  相似文献   
95.
This study documents the petrography and whole-rock major and trace element geochemistry of 38 samples mainly from a drill core through the entire Fedorivka layered intrusion (Korosten Pluton), as well as mineral compositions (microprobe analyses and separated mineral fraction analyses of plagioclase, ilmenite, magnetite and apatite) of 10 samples. The Fedorivka layered intrusion can be divided into 4 lithostratigraphic units: a Lower Zone (LZ, 72 m thick), a Main Zone (MZ, 160 m thick), and an Upper Border Zone, itself subdivided into 2 sub-zones (UBZ2, 40 m thick; UBZ1, 50 m thick). Igneous lamination defines the cumulate texture, but primary cumulus minerals have been affected by trapped liquid crystallization and subsolidus recrystallization. The dominant cumulus assemblage in MZ and UBZ2 is andesine (An39–42), iron-rich olivine (Fo32–42), augite (En29–35Fs24–29Wo42–44), ilmenite (Hem1–6), Ti-magnetite (Usp52–78), and apatite. The data reveal a continuous evolution from the floor of the intrusion (LZ) to the top of MZ, due to fractional crystallization, and an inverse evolution in UBZ, resulting from crystallization downwards from the roof. The whole-rock Fe/Mg ratio and incompatible element contents (e.g. Rb, Nb, Zr, REE) increase in the fractionating magma, whereas compatible elements (e.g. V, Cr) steadily decrease. The intercumulus melt remained trapped in the UBZ cumulates due to rapid cooling and lack of compaction, and cumulus mineral compositions re-equilibrated (e.g. olivine, Fe–Ti oxides). In LZ, the intercumulus melt was able to partially or totally escape. The major element composition of the MZ cumulates can be approximated by a mixing (linear) relationship between a plagioclase pole and a mafic pole, the latter being made up of all mafic minerals in (nearly) constant relative proportions. By analogy with the ferrobasaltic/jotunitic liquid line of descent, defined in Rogaland, S. Norway, and its conjugated cumulates occurring in the Transition Zone of the Bjerkreim-Sokndal intrusion (Rogaland, a monzonitic (57% SiO2) melt is inferred to be in equilibrium with the MZ cumulates. The conjugated cumulate composition falls (within error) on the locus of cotectic compositions fixed by the 2-pole linear relationship. Ulvöspinel is the only Ti phase in some magnetites that have been protected from oxidation. QUIlF equilibria in these samples show that magnetite and olivine in MZ have retained their liquidus compositions during subsolidus cooling. This permits calculation of liquidus fO2 conditions, which vary during fractionation from ΔFMQ = 0.7 to − 1.4 log units. Low fO2 values are also evidenced by the late appearance of cumulus magnetite (Fo42) and the high V3+-content of the melt, reflected in the high V-content of the first liquidus magnetite (up to 1.85% V).  相似文献   
96.
The Graveyard Point intrusion is the only known example of awell-exposed differentiated mafic pluton associated with thelate Miocene–Pleistocene magmatism of the western SnakeRiver Plain (SRP). It is exposed in a 6 km by 4 km area adjacentto the Oregon–Idaho border, and exposures range in thicknessfrom 20 to 160 m. The thicker parts of the intrusion are stronglydifferentiated and contain a 25–60 m thick section ofwell-laminated cumulus-textured gabbros that grade upward intopegmatoidal ferrogabbro. Evolved liquids formed sheets of Fe-richsiliceous granophyre. At least two injections of magma are indicatedby abrupt discontinuities in the rock and mineral compositions,and by the lack of mass balance between the bulk intrusion andits chilled borders. The laminated gabbros are interpreted tohave formed from a tongue of augite and plagioclase crystalsthat were carried in with the second pulse of magma. Followingthe final emplacement of the intrusion, in situ differentiationproceeded through a two-stage process: the ferrogabbros areexplained as interstitial liquids forced out of the crystalmush by compaction, and the siliceous granophyres are interpretedto be residual liquids that migrated out of the partly crystallizedferrogabbros in response to the exsolution of volatiles. Becausethe geochemical trend inferred for the mafic to intermediatecomposition liquids in the Graveyard Point intrusion is similarto the trend for many western Snake River Plain lavas, the plutonmay be a good model for shallow sub-volcanic magma chamberselsewhere in the SRP. However, some western SRP lavas containanomalously high concentrations of P2O5 , which are best explainedby mixing within the active crustal mush column or with partialmelts of previously formed differentiated mafic intrusions. KEY WORDS: Snake River Plain; mafic intrusions; tholeiitic; sill; granophyre  相似文献   
97.
B. Robins  F. Chiodoni 《Lithos》2007,98(1-4):335-338
We dispute Duchesne and Charlier's (Duchesne, J.C., Charlier, B., 2005. Geochemistry of cumulates from the Bjerkreim–Sokndal Intrusion (S. Norway). Part I: Constraints from major elements on the mechanism of cumulate formation and on the jotunite liquid line of descent. Lithos 83, 229–254.) postulate that the major-element compositions of cumulates in the Bjerkreim–Sokndal Intrusion vary linearly between plagioclase and mafic “poles” and their inference that this supports an origin by in situ crystallisation. We use a larger set of major-element data for plagioclase–orthopyroxene–ilmenite cumulates to show that some linear trends in Harker diagrams simply reflect varying amounts of hemo-ilmenite relative to plagioclase and orthopyroxene, while others are probably spurious and induced by variations in modal plagioclase, the most abundant cumulus mineral. Ratios of oxides that enter almost exclusively into orthopyroxene and hemo-ilmenite are shown to be highly dispersed, reflecting differential sorting of the mafic minerals.  相似文献   
98.
Intrusions of ultramafic bodies into the lower density continental crust are documented for a large variety of tectonic settings spanning continental shields, rift systems, collision orogens and magmatic arcs. The intriguing point is that these intrusive bodies have a density higher by 300-500 kg m−3 than host rocks. Resolving this paradox requires an understanding of the emplacement mechanism. We have employed finite differences and marker-in-cell techniques to carry out a 2D modeling study of intrusion of partly crystallized ultramafic magma from sublithospheric depth to the crust through a pre-existing magmatic channel. By systematically varying the model parameters we document variations in intrusion dynamics and geometry that range from funnel- and finger-shaped bodies (pipes, dikes) to deep seated balloon-shaped intrusions and flattened shallow magmatic sills. Emplacement of ultramafic bodies in the crust lasts from a few kyr to several hundreds kyr depending mainly on the viscosity of the intruding, partly crystallized magma. The positive buoyancy of the sublithospheric magma compared to the overriding, colder mantle lithosphere drives intrusion while the crustal rheology controls the final location and the shape of the ultramafic body. Relatively cold elasto-plastic crust (TMoho = 400 °C) promotes a strong upward propagation of magma due to the significant decrease of plastic strength of the crust with decreasing confining pressure. Emplacement in this case is controlled by crustal faulting and subsequent block displacements. Warmer crust (TMoho = 600 °C) triggers lateral spreading of magma above the Moho, with emplacement being accommodated by coeval viscous deformation of the lower crust and fault tectonics in the upper crust. Strong effects of magma emplacement on surface topography are also documented. Emplacement of high-density, ultramafic magma into low-density rocks is a stable mechanism for a wide range of model parameters that match geological settings in which partially molten mafic-ultramafic rocks are generated below the lithosphere. We expect this process to be particularly active beneath subduction-related magmatic arcs where huge volumes of partially molten rocks produced from hydrous cold plume activity accumulate below the overriding lithosphere.  相似文献   
99.
The transportation of magma in sedimentary basins often occurs through extensive dyke-sill networks. The role of sills on the plumbing system in rifted margins and the impact of sills on hydrocarbon reservoirs of prospective sedimentary basins has long been an area of great industrial interest and scientific debate. Based on 2D seismic reflection, we present data on how the sills emplaced to form a magmatic plumbing system of the volcanic system for the Zhongjiannan Basin(ZJNB). The results show...  相似文献   
100.
阿拉善地块北缘是研究古亚洲洋最终闭合过程的重要区域,该区大面积出露的石炭-二叠纪火成岩尚缺乏深入探讨,直接导致古亚洲洋最终闭合时间的认识无法统一,进而制约了中亚造山带南缘中部晚古生代构造演化问题的讨论.通过选取的乌力吉岩体位于恩格乌苏断裂带和巴丹吉林断裂带之间,处于沙拉扎山构造带内,对其开展了系统的岩相学、全岩地球化学...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号