首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   62篇
  国内免费   126篇
测绘学   1篇
大气科学   3篇
地球物理   54篇
地质学   305篇
海洋学   2篇
综合类   9篇
自然地理   11篇
  2024年   2篇
  2023年   8篇
  2022年   14篇
  2021年   12篇
  2020年   12篇
  2019年   12篇
  2018年   5篇
  2017年   20篇
  2016年   14篇
  2015年   8篇
  2014年   15篇
  2013年   22篇
  2012年   16篇
  2011年   9篇
  2010年   8篇
  2009年   11篇
  2008年   17篇
  2007年   14篇
  2006年   28篇
  2005年   7篇
  2004年   17篇
  2003年   9篇
  2002年   8篇
  2001年   9篇
  2000年   25篇
  1999年   8篇
  1998年   9篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   13篇
  1988年   1篇
  1979年   1篇
排序方式: 共有385条查询结果,搜索用时 15 毫秒
1.
Magnetotelluric investigations have been carried out in the Garhwal Himalayan corridor to delineate the electrical structure of the crust along a profile extending from Indo-Gangetic Plain to Higher Himalayan region in Uttarakhand, India. The profile passing through major Himalayan thrusts: Himalayan Frontal Thrust (HFF), Main Boundary Thrust (MBT) and Main Central Thrust (MCT), is nearly perpendicular to the regional geological strike. Data processing and impedance analysis indicate that out of 44 stations MT data recorded, only 27 stations data show in general, the validity of 2D assumption. The average geoelectric strike, N70°W, was estimated for the profile using tensor decomposition. 2D smooth geoelectrical model has been presented, which provides the electrical image of the shallow and deeper crustal structure. The major features of the model are (i) a low resistivity (<50Ωm), shallow feature interpreted as sediments of Siwalik and Indo-Gangetic Plain, (ii) highly resistive (> 1000Ωm) zone below the sediments at a depth of 6 km, interpreted as the top surface of the Indian plate, (iii) a low resistivity (< 10Ωm) below the depth of 6 km near MCT zone coincides with the intense micro-seismic activity in the region. The zone is interpreted as the partial melting or fluid phase at mid crustal depth. Sensitivity test indicates that the major features of the geoelectrical model are relevant and desired by the MT data.  相似文献   
2.
拉萨地体东南缘的多期深熔作用及动力学   总被引:13,自引:7,他引:6  
位于青藏高原班公湖-怒江蛇绿岩带与印度-雅鲁藏布江蛇绿岩带之间拉萨地体东南缘的前寒武纪结晶基底经历了角闪岩相-麻粒岩相区域变质作用和强烈的混合岩化.研究区可识别出两期深熔作用,第一期为斜长角闪岩部分熔融形成的花岗闪长岩脉体,其与围岩一起发生了变质与变形再造,转变成了黑云斜长片麻岩.第二期为含夕线石石榴石片麻岩部分熔融形成的含石榴石斜长石花岗岩脉体.岩石化学成分显示,第一期深熔脉体具有埃达克岩的典型地球化学特征,其SiO2=63.81%,Al2O3=16,92%,MgO=1.86%,Na2O=4.22%,K2O=1.81%,K2O/Na2O=0.43,并显示出LREE富集、无Eu异常的BEE配分模型,同时明显富Sr(366×10-6),贫Y(12×10-6)和Yb(0.4×10-6),Sr/Y=30.舍石榴石斜长石花岗岩主要由斜长石、石英和石榴石组成,含少量白云母和黑云母,其全岩SiO2=71.14%,Al2O3=14.26%,K2O=0.26%,Na2O=2.79%.CaO=2.94%.过铝指数A/CNK=1.40,为典型的过铝花岗岩.黑云斜长片麻岩脉体中的大多数锆石具有同心韵律状结晶环带和较高的Th//U比值(0.433~1.167),为典型的岩浆结晶锆石.锆石岩浆结晶域U-Pb原位定年给出了64.0±1.0Ma(MSWD=8.7)加权平均年龄;个别锆石变质交生边给出了27.9 Ma的谐和年龄,同时具有较低的Th/U比值(0.019),应代表后期叠加的变质热事件年龄.含石榴石斜长石花岗岩中的锆石均发育同心韵律状环带,而且具有较高的Th/U比值(0.196~1.212).所获得的谐和年龄在27.0~34.1Ma之间(加权平均年龄为29.3±0.9 Ma),应代表过铝花岗岩的结晶年龄.因此,我们认为拉萨地体东南缘变质基底在古近纪经历了两期深熔作用,第一期发生在约65Ma,在特提斯洋壳俯冲和印度板块与拉萨地体碰撞的动力学体制下,拉萨地体下地壳加厚和升温,发生了麻粒岩相变质和部分熔融,形成了埃达克岩质的花岗闪长岩浆;第二期混合岩化作用发生在约30Ma,在印度板块与拉萨地体碰撞后伸展的动力学体制下,高角闪岩相泥质变质岩中的含水矿物脱水熔融形成了过铝质花岗闪长岩浆.  相似文献   
3.
Preservation/exhumation of ultrahigh-pressure subduction complexes   总被引:14,自引:0,他引:14  
W.G. Ernst   《Lithos》2006,92(3-4):321-335
Ultrahigh-pressure (UHP) metamorphic terranes reflect subduction of continental crust to depths of 90–140 km in Phanerozoic contractional orogens. Rocks are intensely overprinted by lower pressure mineral assemblages; traces of relict UHP phases are preserved only under kinetically inhibiting circumstances. Most UHP complexes present in the upper crust are thin, imbricate sheets consisting chiefly of felsic units ± serpentinites; dense mafic and peridotitic rocks make up less than  10% of each exhumed subduction complex. Roundtrip prograde–retrograde PT paths are completed in 10–20 Myr, and rates of ascent to mid-crustal levels approximate descent velocities. Late-stage domical uplifts typify many UHP complexes.

Sialic crust may be deeply subducted, reflecting profound underflow of an oceanic plate prior to collisional suturing. Exhumation involves decompression through the PT stability fields of lower pressure metamorphic facies. Scattered UHP relics are retained in strong, refractory, watertight host minerals (e.g., zircon, pyroxene, garnet) typified by low rates of intracrystalline diffusion. Isolation of such inclusions from the recrystallizing rock matrix impedes back reaction. Thin-aspect ratio, ductile-deformed nappes are formed in the subduction zone; heat is conducted away from UHP complexes as they rise along the subduction channel. The low aggregate density of continental crust is much less than that of the mantle it displaces during underflow; its rapid ascent to mid-crustal levels is driven by buoyancy. Return to shallow levels does not require removal of the overlying mantle wedge. Late-stage underplating, structural contraction, tectonic aneurysms and/or plate shallowing convey mid-crustal UHP décollements surfaceward in domical uplifts where they are exposed by erosion. Unless these situations are mutually satisfied, UHP complexes are completely transformed to low-pressure assemblages, obliterating all evidence of profound subduction.  相似文献   

4.
喜马拉雅造山带中段定结地区拆离断层   总被引:1,自引:1,他引:1  
定结地区位于喜马拉雅造山带中段,发育大量的低角度伸展拆离断层,这些拆离断层中部分构成了藏南拆离系的主体。它们基本上垂直于造山带走向伸展,各拆离断层特征显著,普遍发育糜棱岩,糜棱岩类型复杂,主要有硅质糜棱岩、长英质糜棱岩、花岗质糜棱岩。在研究区的北部,拆离断层呈环状产出,构成变质核杂岩三层结构中的中间层,规模一般较大;同时拆离断层使变质核杂岩体盖层中的部分地层拆离减薄;在研究区南部拆离断层呈线状延伸很远,总体上平行造山带延伸,构成了藏南拆离系重要组成部分。部分拆离断层同韧性剪切带平行产出,形成拆离剪切的脆韧性体系。  相似文献   
5.
The metamorphic core of the Himalaya in the Kali Gandaki valley of central Nepal corresponds to a 5-km-thick sequence of upper amphibolite facies metasedimentary rocks. This Greater Himalayan Sequence (GHS) thrusts over the greenschist to lower amphibolite facies Lesser Himalayan Sequence (LHS) along the Lower Miocene Main Central Thrust (MCT), and it is separated from the overlying low-grade Tethyan Zone (TZ) by the Annapurna Detachment. Structural, petrographic, geothermobarometric and thermochronological data demonstrate that two major tectonometamorphic events characterize the evolution of the GHS. The first (Eohimalayan) episode included prograde, kyanite-grade metamorphism, during which the GHS was buried at depths greater than c. 35 km. A nappe structure in the lowermost TZ suggests that the Eohimalayan phase was associated with underthrusting of the GHS below the TZ. A c. 37 Ma 40Ar/39Ar hornblende date indicates a Late Eocene age for this phase. The second (Neohimalayan) event corresponded to a retrograde phase of kyanite-grade recrystallization, related to thrust emplacement of the GHS on the LHS. Prograde mineral assemblages in the MCT zone equilibrated at average T =880 K (610 °C) and P =940 MPa (=35 km), probably close to peak of metamorphic conditions. Slightly higher in the GHS, final equilibration of retrograde assemblages occurred at average T =810 K (540 °C) and P=650 MPa (=24 km), indicating re-equilibration during exhumation controlled by thrusting along the MCT and extension along the Annapurna Detachment. These results suggest an earlier equilibration in the MCT zone compared with higher levels, as a consequence of a higher cooling rate in the basal part of the GHS during its thrusting on the colder LHS. The Annapurna Detachment is considered to be a Neohimalayan, synmetamorphic structure, representing extensional reactivation of the Eohimalayan thrust along which the GHS initially underthrust the TZ. Within the upper GHS, a metamorphic discontinuity across a mylonitic shear zone testifies to significant, late- to post-metamorphic, out-of-sequence thrusting. The entire GHS cooled homogeneously below 600–700 K (330–430 °C) between 15 and 13 Ma (Middle Miocene), suggesting a rapid tectonic exhumation by movement on late extensional structures at higher structural levels.  相似文献   
6.
The growth and dissolution behaviour of accessory phases (and especially those of geochronological interest) in metamorphosed pelites depends on, among others, the bulk composition, the prograde metamorphic evolution and the cooling path. Monazite and zircon are arguably the most commonly used geochronometers for dating felsic metamorphic rocks, yet crystal growth mechanisms as a function of rock composition, pressure and temperature are still incompletely understood. Ages of different growth zones in zircon and monazite in a garnet‐bearing anatectic metapelite from the Greater Himalayan Sequence in NW Bhutan were investigated via a combination of thermodynamic modelling, microtextural data and interpretation of trace‐element chemical ‘fingerprint’ indicators in order to link them to the metamorphic stage at which they crystallized. Differences in the trace‐element composition (HREE, Y, EuN/Eu*N) of different phases were used to track the growth/dissolution of major (e.g. plagioclase, garnet) and accessory phases (e.g. monazite, zircon, xenotime, allanite). Taken together, these data constrain multiple pressure–temperature–time (P–T–t) points from low temperature (<550 °C) to upper amphibolite facies (partial melting, >700 °C) conditions. The results suggest that the metapelite experienced a cryptic early metamorphic stage at c. 38 Ma at <550 °C, ≥0.85 GPa during which plagioclase was probably absent. This was followed by a prolonged high‐T, medium‐pressure (~600 °C, 0.55 GPa) evolution at 35–29 Ma during which the garnet grew, and subsequent partial melting at >690 °C and >18 Ma. Our data confirm that both geochronometers can crystallize independently at different times along the same P–T path and that neither monazite nor zircon necessarily provides timing constraints on ‘peak’ metamorphism. Therefore, collecting monazite and zircon ages as well as major and trace‐element data from major and accessory phases in the same sample is essential for reconstructing the most coherent metamorphic P–T–t evolution and thus for robustly constraining the rates and timescales of metamorphic cycles.  相似文献   
7.
东喜马拉雅构造结的南迦巴瓦杂岩含有广泛分布的高压麻粒岩,但由于以前获得了许多不同的年龄,对这些麻粒岩的变质与深熔时代、持续时间和成因存在不同认识。本文对泥质高压麻粒岩(蓝晶石榴黑云片岩)中的锆石和独居石进行了系统的内部结构、U-(Th)-Pb定年和微量元素分析,以求揭示这些岩石是否具有相同的演化过程。所研究的6个蓝晶石榴黑云片岩由石榴石、蓝晶石、黑云母、石英、钾长石、斜长石、夕线石、白云母、石墨和副矿物金红石、钛铁矿、锆石和独居石组成,峰期矿物组合是石榴石+蓝晶石+斜长石+钾长石+黑云母+石英+金红石。6个样品中的锆石均由继承碎屑核+变质(深熔)幔+变质(深熔)边组成。其中3个样品中的锆石幔和边较宽,均可进行原位定年,幔部给出了类似的较老年龄范围(39.6~31.6Ma、40.8~32.0Ma和38.1~31.3Ma),而边部给出了类似的较年轻年龄范围(26.8~17.3Ma、28.3~18.6Ma和28.4~18.8Ma)。另外3个样品的锆石幔部较窄,不能进行分析,其边部给出了与前3个样品锆石边部类似的年轻年龄范围(22.0~17.0Ma、20.9~16.9Ma和22.2~16.6Ma)。一个片岩样品中的独居石给出了与其锆石幔部+边部年龄类似的较宽年龄范围(38.1~17.5Ma),而另外3个样品中的独居石获得了与其锆石边部年龄相似的年轻年龄范围(26.0~18.8Ma、22.3~16.9Ma和26.4~19.4Ma)。随着年龄的减小,锆石和独居石的Th/U比值增大,Eu/Eu*减小,独居石的HREE和Y含量减小。基于这些分析结果,笔者认为所研究的6个片岩记录了相同的、从~41Ma持续到~17Ma的进变质与深熔过程。但是,由于某些样品中的锆石和独居石在早期变质和深熔过程中形成的结晶域(锆石幔部)很窄,无法定年,导致不同的样品获得了不同的年龄范围。结合现有研究成果,笔者推测南迦巴瓦杂岩中的高压麻粒岩经历了相似的长期进变质与深熔过程。  相似文献   
8.
关键金属是全球高科技产业不可或缺的战略性资源,其富集机制和成矿作用是目前国际矿床学研究的热点之一。我们对喜马拉雅带吉隆和亚东地区淡色花岗岩开展系统的地球化学研究,发现侵入到藏南拆离系的淡色花岗岩含有较高的Sn、Cs、Tl、Be、W、B、Li和Bi。全岩元素地球化学分析表明,这些淡色花岗岩具有如下特征:(1)富集关键金属元素;(2)为原始岩浆经历斜长石、锆石、独居石、磷灰石、云母分离结晶作用后的残余熔体;(3)关键元素的富集和矿化与花岗岩高度分离结晶作用密切相关。随着分异程度的增强,岩浆变为富挥发分的高SiO2体系,关键金属元素在残余熔体中富集,并且最后可能形成具有工业价值的矿床。由于地球化学特征的相似性,Cs和Tl呈类质同象替代钾、铷进入云母中。富集关键金属元素的花岗岩在时间上和空间上属于与藏南拆离系相关的同构造侵位花岗岩,藏南拆离系的活动促使了原始岩浆的广泛分离结晶作用,以及后期的关键金属元素(如Rb、Cs和Tl)的富集。  相似文献   
9.
The Himalayan Yew (Taxus baccata subsp, wallichiana) is an endangered native high value medicinal plant of the Himalayan Region. The several medicinal properties of the bark and leaves of this species have increased its risk of extinction due to pressures for utilization. It is also subjected to harvest for fuelwood. The species does not regenerate well from seed and that is another risk factor. The objective of this research was to investigate the population ecology of the species as a foundation for its conservation. Six forest communities in the Khokhan Wildlife Sanctuary where the species is present were sampled. The abundance of the species, impacts of harvesting and its current regeneration patterns indicate that it may soon be extirpated from the Sanctuary. A plan for conserving the remaining sub-populations is presented. It could provide a template for conservation in other locations where the species is at risk.  相似文献   
10.
中国喜马拉雅构造运动的陆内变形特征与油气矿藏富集   总被引:12,自引:0,他引:12  
贾承造 《地学前缘》2007,14(4):96-104
在前人研究的基础上,结合近年来在油气勘探中不断积累的地质资料和地质认识,提出了中国喜马拉雅构造运动的陆内变形特征及其分布规律受控于小型克拉通板块拼贴的基底结构和印/欧碰撞与太平洋板块俯冲所主导的双重控制因素;喜马拉雅构造运动的发育特征主要表现为三种动力学机制:青藏高原隆升、盆地与造山带体制和东部拉张活动。喜马拉雅构造运动的大地构造格局及其构造变形分布规律集中体现为4个构造域:青藏高原隆升区、环青藏高原盆山体系、稳定区和环西太平洋裂谷活动区。我国沉积盆地在喜马拉雅构造运动中的构造特征分为三种类型:(1)东部渤海湾、松辽等盆地受拉张构造环境控制的裂谷沉降;(2)中部四川、鄂尔多斯等盆地受青藏高原的向东推挤、盆缘冲断、盆内抬升剥蚀;(3)西部的塔里木、准噶尔、柴达木等盆地受青藏高原的向北推挤、冲断挠曲沉降,表现为克拉通单边或双边的压缩挠曲沉降与克拉通内部的冲断隆升沉降等多种盆山耦合形式。喜马拉雅构造运动控制着中国油气晚期定位与富集成藏,主要体现在:盆地的沉积与成藏,形成新生界自生自储的含油气盆地和油气藏;圈闭形成与油气运聚成藏;早期油气藏的调整和再分配;油气藏的破坏。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号