首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   129篇
  国内免费   296篇
测绘学   1篇
大气科学   3篇
地球物理   76篇
地质学   829篇
海洋学   8篇
综合类   17篇
自然地理   32篇
  2024年   3篇
  2023年   14篇
  2022年   26篇
  2021年   30篇
  2020年   26篇
  2019年   26篇
  2018年   16篇
  2017年   42篇
  2016年   32篇
  2015年   22篇
  2014年   39篇
  2013年   52篇
  2012年   44篇
  2011年   24篇
  2010年   24篇
  2009年   34篇
  2008年   40篇
  2007年   36篇
  2006年   56篇
  2005年   23篇
  2004年   42篇
  2003年   26篇
  2002年   29篇
  2001年   25篇
  2000年   40篇
  1999年   28篇
  1998年   28篇
  1997年   23篇
  1996年   23篇
  1995年   21篇
  1994年   11篇
  1993年   11篇
  1992年   11篇
  1991年   5篇
  1990年   5篇
  1989年   17篇
  1988年   6篇
  1987年   4篇
  1985年   1篇
  1979年   1篇
排序方式: 共有966条查询结果,搜索用时 62 毫秒
21.
The metamorphic core of the Himalaya in the Kali Gandaki valley of central Nepal corresponds to a 5-km-thick sequence of upper amphibolite facies metasedimentary rocks. This Greater Himalayan Sequence (GHS) thrusts over the greenschist to lower amphibolite facies Lesser Himalayan Sequence (LHS) along the Lower Miocene Main Central Thrust (MCT), and it is separated from the overlying low-grade Tethyan Zone (TZ) by the Annapurna Detachment. Structural, petrographic, geothermobarometric and thermochronological data demonstrate that two major tectonometamorphic events characterize the evolution of the GHS. The first (Eohimalayan) episode included prograde, kyanite-grade metamorphism, during which the GHS was buried at depths greater than c. 35 km. A nappe structure in the lowermost TZ suggests that the Eohimalayan phase was associated with underthrusting of the GHS below the TZ. A c. 37 Ma 40Ar/39Ar hornblende date indicates a Late Eocene age for this phase. The second (Neohimalayan) event corresponded to a retrograde phase of kyanite-grade recrystallization, related to thrust emplacement of the GHS on the LHS. Prograde mineral assemblages in the MCT zone equilibrated at average T =880 K (610 °C) and P =940 MPa (=35 km), probably close to peak of metamorphic conditions. Slightly higher in the GHS, final equilibration of retrograde assemblages occurred at average T =810 K (540 °C) and P=650 MPa (=24 km), indicating re-equilibration during exhumation controlled by thrusting along the MCT and extension along the Annapurna Detachment. These results suggest an earlier equilibration in the MCT zone compared with higher levels, as a consequence of a higher cooling rate in the basal part of the GHS during its thrusting on the colder LHS. The Annapurna Detachment is considered to be a Neohimalayan, synmetamorphic structure, representing extensional reactivation of the Eohimalayan thrust along which the GHS initially underthrust the TZ. Within the upper GHS, a metamorphic discontinuity across a mylonitic shear zone testifies to significant, late- to post-metamorphic, out-of-sequence thrusting. The entire GHS cooled homogeneously below 600–700 K (330–430 °C) between 15 and 13 Ma (Middle Miocene), suggesting a rapid tectonic exhumation by movement on late extensional structures at higher structural levels.  相似文献   
22.
西天山艾肯达坂组火山岩系同位素定年及其构造意义   总被引:10,自引:1,他引:10  
西天山艾肯达坂地区较好发育了艾肯达坂纽红色陆相火山岩建造.它不整合在下石炭统大哈拉军山组之上,未经变形和变质,属于陆陆碰撞晚期的橄榄安粗岩系,其年龄确定是厘定从碰撞造山向陆内构造演化的关键。因此,通过16件新获得的钾氩年龄测值,确定艾肯达坂组火山岩系形成在260Ma~270Ma之间,属早二叠世,而不是过去认为的石炭纪;西天山的陆陆碰撞应在二叠纪末结束,此后进入陆内造山阶段。  相似文献   
23.
A number of en échelon-arranged, southwest-facing arc fragments of Palaeozoic to Jurassic ages, sandwiched between two fairly straight east-northeast trending boundaries, constitute the basement of the Scythian and the Turan platforms located between the Laurasian and Tethyside units. They have until now largely escaped detection owing to extensive Jurassic and younger cover and the inaccessibility of the subsurface data to the international geological community. These units are separated from one another by linear/gently-curved faults of great length and steep dip. Those that are exposed show evidence of strike-slip motion. The arc units originally constituted parts of a single “Silk Road Arc” located somewhere south of the present-day central Asia for much of the Palaeozoic, although by the late Carboniferous they had been united into a continental margin arc south of the Tarim basin and equivalent units to the west and east. They were stacked into their present places in northern Afghanistan, Turkmenistan, Caucasus and the northern Black Sea by large-scale, right-lateral strike-slip coastwise transport along arc-slicing and arc-shaving strike-slip faults in the Triassic and medial Jurassic simultaneously with the subductive elimination of Palaeo-Tethys. This gigantic dextral zone (“the Silk Road transpression”) was a trans-Eurasian structure and was active simultaneously with another, similar system, the Gornostaev keirogen and greatly distorted Eurasia. The late Palaeozoic to Jurassic internal deformation of the Dniepr–Donets aulacogen was also a part of the dextral strain in southern Europe. When the emplacement of the Scythian and Turan units was completed, the elimination of Palaeo-Tethys had also ended and Neo-Tethyan arcs were constructed atop their ruins, mostly across their southern parts. The western end of the great dextral zone that emplaced the Turan and Scythian units horsetails just east of north Dobrudja and a small component goes along the Tornquist–Teisseyre lineament.  相似文献   
24.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   
25.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   
26.
The growth and dissolution behaviour of accessory phases (and especially those of geochronological interest) in metamorphosed pelites depends on, among others, the bulk composition, the prograde metamorphic evolution and the cooling path. Monazite and zircon are arguably the most commonly used geochronometers for dating felsic metamorphic rocks, yet crystal growth mechanisms as a function of rock composition, pressure and temperature are still incompletely understood. Ages of different growth zones in zircon and monazite in a garnet‐bearing anatectic metapelite from the Greater Himalayan Sequence in NW Bhutan were investigated via a combination of thermodynamic modelling, microtextural data and interpretation of trace‐element chemical ‘fingerprint’ indicators in order to link them to the metamorphic stage at which they crystallized. Differences in the trace‐element composition (HREE, Y, EuN/Eu*N) of different phases were used to track the growth/dissolution of major (e.g. plagioclase, garnet) and accessory phases (e.g. monazite, zircon, xenotime, allanite). Taken together, these data constrain multiple pressure–temperature–time (P–T–t) points from low temperature (<550 °C) to upper amphibolite facies (partial melting, >700 °C) conditions. The results suggest that the metapelite experienced a cryptic early metamorphic stage at c. 38 Ma at <550 °C, ≥0.85 GPa during which plagioclase was probably absent. This was followed by a prolonged high‐T, medium‐pressure (~600 °C, 0.55 GPa) evolution at 35–29 Ma during which the garnet grew, and subsequent partial melting at >690 °C and >18 Ma. Our data confirm that both geochronometers can crystallize independently at different times along the same P–T path and that neither monazite nor zircon necessarily provides timing constraints on ‘peak’ metamorphism. Therefore, collecting monazite and zircon ages as well as major and trace‐element data from major and accessory phases in the same sample is essential for reconstructing the most coherent metamorphic P–T–t evolution and thus for robustly constraining the rates and timescales of metamorphic cycles.  相似文献   
27.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   
28.
青藏高原片麻岩穹窿与找矿前景   总被引:4,自引:0,他引:4  
片麻岩穹窿是研究俯冲-折返和碰撞-折返造山过程的重要窗口。已查明的大量青藏高原片麻岩穹窿(群)分布在古特提斯和新特提斯大洋俯冲-折返以及地体碰撞-折返过程中。松潘-甘孜造山带中雅江甲基卡片(麻)岩穹窿的三叠纪变质片岩的含矿伟晶岩脉中发现了超大型锂矿床,揭示片(麻)岩穹窿构造与同构造花岗岩、含矿伟晶岩脉以及大型印支滑脱带在时空和成因上有天然联系,为片麻岩穹窿的找矿前景提供了范例。  相似文献   
29.
The evaporite-cored Hoodoo Dome on southern Ellef Ringnes Island, Sverdrup Basin, was examined to improve the understanding of its structural geological history in relation to hydrocarbon migration. Data from geological mapping, reflection seismic, thermal maturity and detrital apatite (U–Th)/He cooling ages are presented. Five stages of diapirism are interpreted from Jurassic to Recent times:1. 180 to 163 Ma (pre-Deer Bay Formation; development of a diapir with a circular map pattern).2. 163 to 133 Ma (Deer Bay to lower Isachsen formations; development of salt wings).3. 115 to 94 Ma (Christopher and Hassel formations; ongoing diapirism and development of an oval map pattern)4. 79 Ma (Kanguk Formation; reactivation of the central diapir).5. 42 Ma to 65 Ma (Eurekan Orogeny; tightening of the anticline).During phase1, the Hoodoo diapir was circular. During phase 2, salt wings formed along its margin. During phase 3, the Hoodoo Dome geometry evolved into a much larger, elongate, doubly plunging anticline. Phase 4 is inferred from thermochronology data as indicated by a cluster of cooling ages, but the extent of motion during that time is unknown. During Phase 5 the dome was tightened creating approximately 700 m of structural relief. Denudation since the end of the Eurekan Orogeny is estimated to be about 600 m.A one dimensional burial history model predicts hydrocarbon generation from Middle and Late Triassic source rocks between 140 and 66 Ma, with majority of hydrocarbon expulsion between 117 and 79 Ma. Hydrocarbon generation post-dates salt wing formation, so that this trap could host natural gas expelled from Triassic source rocks.  相似文献   
30.
The Jiajiwaxi pluton in the southern portion of the West Kunlun Range can be divided into two collision–related intrusive rock series, i.e., a gabbro–quartz diorite–granodiorite series that formed at 224±2.0 Ma and a monzonitic granite–syenogranite series that formed at 222±2.0 Ma. The systematic analysis of zircon U-Pb geochronology and bulk geochemistry is used to discuss the magmatic origin(material source and thermal source), tectonic setting, genesis and geotectonic implications of these rocks. The results of this analysis indicate that the parent magma of the first series, representing a transition from I-type to S-type granites, formed from thermally triggered partial melting of deep crustal components in an early island–arc–type igneous complex, similar to an I-type granite, during the continental collision orogenic stage. The parent magma of the second series, corresponding to an S-type granite, formed from the partial melting of forearc accretionary wedge sediments in a subduction zone in the late Palaeozoic–Triassic. During continued collision, the second series magma was emplaced into the first series pluton along a central fault zone in the original island arc region, forming an immiscible puncture-type complex. The deep tectonothermal events associated with the continent–continent collision during the orogenic cycle are constrained by the compositions and origins of the two series. The new information provided by this paper will aid in future research into the dynamic mechanisms affecting magmatic evolution in the West Kunlun orogenic belt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号