首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   729篇
  免费   108篇
  国内免费   278篇
测绘学   18篇
地球物理   103篇
地质学   885篇
海洋学   6篇
综合类   44篇
自然地理   59篇
  2024年   8篇
  2023年   12篇
  2022年   24篇
  2021年   33篇
  2020年   34篇
  2019年   34篇
  2018年   27篇
  2017年   43篇
  2016年   35篇
  2015年   24篇
  2014年   40篇
  2013年   64篇
  2012年   44篇
  2011年   30篇
  2010年   29篇
  2009年   51篇
  2008年   53篇
  2007年   42篇
  2006年   63篇
  2005年   35篇
  2004年   43篇
  2003年   32篇
  2002年   35篇
  2001年   26篇
  2000年   56篇
  1999年   28篇
  1998年   25篇
  1997年   24篇
  1996年   26篇
  1995年   22篇
  1994年   19篇
  1993年   10篇
  1992年   9篇
  1991年   10篇
  1990年   4篇
  1989年   9篇
  1988年   5篇
  1987年   4篇
  1985年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1115条查询结果,搜索用时 14 毫秒
101.
在滇东南富宁地区,出露一系列以辉绿岩为主、含少量辉长辉绿岩和辉绿玢岩的基性侵入岩。根据地球化学、同位素地球化学以及锆石U-Pb年代学等分析结果,前人将这些基性侵入岩视作峨眉山大火成岩省的组成部分,源自峨眉山地幔柱。国内外研究的共识认为,峨眉山地幔柱活动发生于263~252Ma之间,持续时间极短。在开展1∶2.5万大比例尺地质调查与填图(洞波幅和皈朝幅1∶5万地质调查手图)过程中,我们发现,这些基性侵入岩不仅侵入古生代地层,还侵入了富宁县皈朝一带的晚二叠世-中三叠世岛弧玄武安山岩(255~241Ma)以及早-中三叠世地层。这些地质事实表明,富宁地区基性侵入岩的形成时代至少晚于中三叠世Anisian期或更晚,与峨眉山地幔柱活动时代存在很大的时差,岩石类型与组合上也与峨眉山大火成岩省的有很大差异。根据我们填图过程中获得的基本地质事实分析,滇东南富宁地区的基性侵入岩是华南地块与北越地块间的古特提斯分支洋盆闭合、两个地块碰撞造山(即印支造山)后的岩浆活动产物,与峨眉山地幔柱没有成因关系。  相似文献   
102.
海南岛后地台造山-造盆模型:火成岩地球化学制约   总被引:9,自引:4,他引:9  
海南岛自海西运动晚幕之后进入后地台活化或地洼阶段,并经历了晚海西-印支期挤压(碰撞)造山、地壳隆起和燕山期以来的块断型造山-造盆作用的过程。火成岩研究资料表明,海南岛地区在晚海西-印支运动期间曾形成一个具有加厚陆壳的后地台造山带;燕山晚期开始出现的裂陷作用是在仍有山根(约60km厚的陆壳)存在的条件下造山带拉伸塌陷阶段的产物;岩石圈底层剥离与地壳山根的去除并最终导致了海南及其邻区从大陆型壳体向陆缘扩张带型壳体的转化。  相似文献   
103.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   
104.
The paper records evidences of neotectonic activities in the Gangotri glacier valley that are found to be responsible for the present-day geomorphic set-up of the area since the last phase of major glaciation. Geomorphological features indicate the presence of a large glacier in the valley in the geological past. Prominent planar structures present in the rocks were later on modified into sets of normal faults in the present-day Himalayan tectonic set-up giving rise to graben structures. The block nearest the snout is traversed by the NW-SE trending Gaumukh fault. A number of terraces mark the entrenchment of Bhagirathi River in this part. The contrasting drainage morphometric parameters of two sides of the valley and asymmetric recessional patterns of the tributary glaciers further document movement along the fault. The distribution and orientation of debris fans also seem to be controlled by neotectonic activity. The neotectonic activity that followed the process of deglaciation has brought the glacially carved, wide U- shaped valley in contact with the present-day fluvially incised narrow and relatively deep valley. The wider segments have become sites of active deposition of glacially eroded debris. The low gradient and excessive filling has resulted in the river attaining a braided nature in these segments.  相似文献   
105.
晚期海西运动在塔里木盆地北部油气藏形成中的作用   总被引:2,自引:0,他引:2  
海西晚期,塔里木板块总体为挤压背景。有资料表明,该时期存在两次性质差异较大的构造运动:早二叠世末期和晚二叠世末期构造运动。前期运动以火山活动、海防变迁为特征;后期以沉积构造格局改变、褶皱、断裂活动为特征,并叠置于前期构造之上。晚期海西运动最终定型的古隆起控制了油气聚集指向,形成的古生代坳陷和中新代坳陷控制着油源区展布,造成了众多的、具有捕获油气能力的圈闭类型。断裂和区域性不整合面为油气运移提供了通道,而且对油气再分布及破坏亦有一定影响。  相似文献   
106.
In the Saxothuringian part of the Vosges (France), a first series of Variscan plutonic rocks (diorites to granites) has been intruded by several younger granites. Rocks of both the older generations have been cross-cut by the late orogenic Kagenfels granite. The averages of the hitherto published mineral ages of the earlier rock generations are 331 and 334 Ma, respectively, whereas Rb-Sr and K-Ar dates around 290 Ma have been reported for the Kagenfels granite. Because of the unlikely large age hiatus, a redetermination of the intrusion age of the Kagenfels granite formation appeared to be irrevocable. The newly obtained mineral ages on the Kagenfels granite (K-Ar and 40Ar/39Ar biotite ages as well as single zircon radiogenic 207Pb/206Pb data: 331 ± 5 Ma) are about 40 Ma older than the previous results. They are interpreted as giving the time of emplacement of the Kagenfels granite during the latest Visan. The mineral ages of the earlier plutonic rocks in this part of the Variscan Orogeny in all probability are not significantly different from their ages of intrusion. Therefore the age concordance of all three granitoid generations constrains a rather narrow time interval of orogenic magmatism close to the Lower-Upper Carboniferous boundary.  相似文献   
107.
Despite extensive efforts to understand the tectonic evolution of the Jiangnan Orogen in South China, the orogenic process and its mechanism remain a matter of dispute. Previous geodynamic studies have mostly focused on collisional orogeny, which is commonly invoked to explain the Jiangnan Orogen. However, it is difficult for such hypotheses to reconcile all the geological and geophysical data, especially the absence of ultrahigh-pressure metamorphic rocks. Based on the magnetotelluric data, we ...  相似文献   
108.
Talc deposits of Rema area in the Kumaun Inner Lesser Himalaya are hosted within high magnesium carbonates of the Proterozoic Deoban Formation. These deposits occur as irregular patches or pockets mainly within magnesite bodies, along with impurities of magnesite, dolomite and clinochlore. Textures represent different phases of reactions between magnesite and silica to produce talc. Petrography, XRD and geochemistry reveal that the talc has primarily developed at the expense of magnesite and silica, leaving dolomite largely un-reacted. Early fluid inclusions in magnesite and dolomite associated with talc are filled with H2O+NaCl+KCl ± MgCl2 ± CaCl2 fluids, which represent basin fluid system during diagenesis of carbonates. Their varied degree of re-equilibration was although not pervasive but points to increased burial, and hence requires careful interpretation. H2O-CO2 fluid with XCO2 between 0.06 and 0.12 was equilibrated with talc formation. The reaction dolomite+quartz → talc was not extensive because T-XCO2 was not favourable, and talc was developed principally after magnesite+quartz.  相似文献   
109.
The 1500-m-thick marine strata of the Tethys Himalaya of the Zhepure Mountain (Tingri, Tibet) comprise the Upper Albian to Eocene and represent the sedimentary development of the passive northern continental margin of the Indian plate. Investigations of foraminifera have led to a detailed biozonation which is compared with the west Tethyan record. Five stratigraphic units can be distinguished: The Gamba group (Upper Albian - Lower Santonian) represents the development from a basin and slope to an outer-shelf environment. In the following Zhepure Shanbei formation (Lower Santonian - Middle Maastrichtian), outer-shelf deposits continue. Pebbles in the top layers point to beginning redeposition on a continental slope. Intensified redeposition continues within the Zhepure Shanpo formation (Middle Maastrichtian - Lower Paleocene). The series is capped by sandstones of the Jidula formation (Danian) deposited from a seaward prograding delta plain. The overall succession of these units represents a sea-level high at the Cenomanian/Turonian boundary followed, from the Turonian to Danian, by an overall shallowing-upward megasequence. This is followed by a final transgression — regression cycle during the Paleocene and Eocene, documented in the Zhepure Shan formation (?Upper Danian - Lutetian) and by Upper Eocene continental deposits. The section represents the narrowing and closure of the Tethys as a result of the convergence between northward-drifting India and Eurasia. The plate collision started in the Lower Maastrichtian and caused rapid changes in sedimentation patterns affected by tectonic subsidence and uplift. Stronger subsidence and deposition took place from the Middle Maastrichtian to the Lower Paleocene. The final closure of remnant Tethys in the Tingri area took place in the Lutetian.  相似文献   
110.
On Continent-Continent Point-Collision and Ultrahigh-Pressure Metamorphism   总被引:4,自引:0,他引:4  
Up to now it is known that almost all ultrahigh-pressure (UHP) metamorphism of non-impact origin occurred in continent-continent collisional orogenic belt, as has been evidenced by many outcrops in the eastern hemisphere. UHP metamorphic rocks are represented by coesite- and diamond-bearing eclogites and eclogite facies metamorphic rocks formed at 650-800℃ and 2.6-3.5 GPa, and most of the protoliths of UHP rocks are volcanic-sedimentary sequences of continental crust. From these it may be deduced that deep subduction of continental crust may have occurred. However, UHP rocks are exposed on the surface or occur near the surface now, which implies that they have been exhumed from great depths. The mechanism of deep subduction of continental crust and subsequent exhumation has been a hot topic of the research on continental dynamics, but there are divergent views. The focus of the dispute is how deep continental crust is subducted so that UHP rocks can be formed and what mechanism causes it to be subducte  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号