首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   409篇
  免费   104篇
  国内免费   246篇
地球物理   44篇
地质学   696篇
海洋学   1篇
综合类   9篇
自然地理   9篇
  2024年   5篇
  2023年   11篇
  2022年   12篇
  2021年   16篇
  2020年   18篇
  2019年   25篇
  2018年   20篇
  2017年   17篇
  2016年   24篇
  2015年   25篇
  2014年   21篇
  2013年   35篇
  2012年   41篇
  2011年   24篇
  2010年   24篇
  2009年   36篇
  2008年   35篇
  2007年   33篇
  2006年   38篇
  2005年   37篇
  2004年   53篇
  2003年   36篇
  2002年   19篇
  2001年   29篇
  2000年   21篇
  1999年   17篇
  1998年   18篇
  1997年   17篇
  1996年   13篇
  1995年   8篇
  1994年   3篇
  1993年   12篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1954年   1篇
排序方式: 共有759条查询结果,搜索用时 46 毫秒
151.
Linking the deformation history of mylonitized continental rocks to the progress of devolatilization reactions that trigger reaction softening is critical for the understanding of crustal scale processes. We have analysed the field geometries and microstructures of deformed rocks within the southern Hercynian belt in Calabria, as well as modelled the pressure–temperature–deformation (P–T–d) trajectory of a main ductile shear zone that tectonically coupled the deeper crustal Mammola Paragneiss Unit with the upper crustal Stilo–Pazzano Phyllite Unit. P–T modelling of the mylonitic Mammola Paragneiss Unit was performed through calculation of phase equilibrium diagrams with the software thermocalc in the MnNCKFMASHTO model system. The prograde P–T–d trajectory is based on the zoning profiles of garnet porphyroblasts and their mineral inclusions, primarily barroisite and epidote. P–T modelling shows that peak metamorphic conditions of ~0.9 GPa and 585°C were reached during a Dn-1 under-thrusting event. The following exhumation during the Dn mylonitic event, and contact metamorphism during Dn+1 and Dn+2 folding events, have also been modelled because they are essential to restore the previous tectono-metamorphic history. The exhumation trajectory was modelled down to 0.3 GPa with temperatures of 440–460°C, under fluid-deficient conditions, as well as the final late Carboniferous contact metamorphism up to Tmax of 680–720°C. The prograde path shows clear evidence for thermal buffering during garnet growth at the expense of chlorite, with a heating-dominated stage after chlorite breakdown. Subsequently, a rheological change associated with epidote breakdown (i.e. reaction softening) occurred, highlighted by a net steepening of the P/T trajectory towards the pressure peak. On the basis of the barroisite inclusions within garnet porphyroblasts as well as the ‘hairpin’ shape of the reconstructed P–T–d path (before contact metamorphism), we infer that the unusual low T/P gradient for the Hercynian crust exposed in the Mammola Paragneiss Unit records its involvement in the Palaeotethys–Gondwana subduction beneath Laurussia during Dn-1 under-thrusting. We present a new palaeotectonic interpretation along the southern Hercynian belt in Calabria during the Upper Mississippian–Lower Pennsylvanian, that is consistent with previous geochronology studies.  相似文献   
152.
Abstract The Berzosa fault is a major ductile shear zone, the Berzosa Shear Zone (BSZ), which separates the ‘Ollo de Sapo’anticline from the inner higher-grade crystalline axis of the Iberian Hercynian Belt. This shear zone is the site of abundant early kinematic quartz (± Al-silicates) segregations, rich in fluid inclusions. Host rocks are medium-grade staurolite schists and sillimanite gneisses. Fluid inclusions in selected quartz segregations across the Berzosa shear zone have been studied by microthermometric methods as well as, in some instances, by Raman analysis. The recorded fluid inclusion history begins at the end of an intense secondary recrystallization period during late-peak metamorphic conditions and lasts until late in the uplift history of the zone. Three types of inclusions have been found, which in a time sequence are: CO2± H2O; H2O+salt (B-type); and, N2+CH4. Three types of B inclusion may be distinguished in turn, depending on whether they were trapped during an earlier dynamic-recovery phase (B1-type), formed later as intergranular trails (B2-type), or were trapped apparently along with N2+CH4 in clusions from a heterogeneous fluid (B3-type). Considerations from isochores confirm that CO2± H2O inclusions were trapped during late-peak and high-T retrograde metamorphic conditions (in the range 650–500°C and 5–2 kbar), whilst N2+CH4 inclusions, along with the B3-type of inclusions, formed at low-pressures (<1 kbar) and temperatures (± 300°C). B2-type inclusions were trapped chronologically between these two in a period in which strong inverse lateral thermal gradients developed in the zone. Inferred P-T paths for the area are convex to the T-axis.  相似文献   
153.
Zircon U–Pb SHRIMP, petrographical and geochemical data lead to the first characterization of the Tonian plutonism (Salto da Divisa Granite Suite), ascribed to the continental rift stage of the precursor basin of the Araçuaí Orogen (Eastern Brazil). The suite includes batholitic plutons and comprises mainly fluorite-bearing, dominantly mesoperthitic hornblende–biotite leucogranites. The presence of mafic (tholeiitic) gabbroic enclaves and syn-plutonic dykes confers to the suite a bimodal character. The plutons were locally deformed and foliated under amphibolite facies conditions, in response to the Neoproterozoic collage of the Araçuaí Orogen against the São Francisco Cratonic margin. However, undeformed magmatic facies are well preserved at inner portions of the plutons. The granitoids are metaluminous, with high SiO2 and HFSE: Nb, Zr, Y, Ta and REE (except Eu); low CaO, Al2O3, Sc, Ba, Sr; high FeOt/MgO ratios, characterizing a chemical signature akin to the subalkaline, A-2 type granites. U–Pb SHRIMP data obtained on zircons from the main pluton yielded a magmatic crystallization age of 875 ± 9 Ma. Some inherited xenocrysts revealed ages of ca. 2080 Ma, corresponding to ages of the host rocks, a Paleoproterozoic basement. Nd isotopic evolution studies confirm the Paleoproterozoic influence on magma genesis with a TDM model age of ca. 1.6 Ga and εNd of − 5.58 at 880 Ma. The African counterpart, the West Congo Belt, encompasses thick rift-related alkaline volcanic-sedimentary basin (Zadinian and Mayumbian groups, and associated anorogenic granites), dated in the interval of ca. 1000–900 Ma. The age differences between the Salto da Divisa Suite intrusion and the anorogenic magmatic episode at the West Congo Belt suggests a westward migration (i.e. to the Brazilian side) of the thermal axis of the rift, ca. 30 Ma after the ending of the extensional process in Africa.  相似文献   
154.
碰撞造山带斑岩型矿床的深部约束机制   总被引:19,自引:8,他引:11  
在印度-亚洲大陆碰撞过程中,俯冲板片断离触发了幔源岩浆底侵作用、下地壳部分熔融和冈底斯岩基带以及同岩基斑岩的产生.在此过程中,幔源岩浆分离结晶的产物、下地壳岩石部分熔融残余和地壳分异过程中下沉的镁铁质块体,构成了加厚下地壳.随着造山岩石圈的冷却和加厚下地壳重力不稳定性的增加,岩石圈拆沉作用触发了后碰撞斑岩型岩浆活动.与此相应,碰撞造山带斑岩型矿床可以形成于同碰撞和后碰撞两个不同的构造阶段.同碰撞成矿作用发生于岩基带形成时期,成矿物质主要来自于底侵幔源岩浆及更深部的含矿流体,其触发机制是俯冲板片的断离.后碰撞成矿作用发生于加厚下地壳冷却之后,成矿物质主要来自于新生矿源层和更深部的含矿流体,其触发机制为岩石圈拆沉作用.在同碰撞构造阶段,伴随着幔源岩浆的底侵作用,深部流体和幔源岩浆所含的成矿物质被注入到岩基岩浆中,与从岩基岩浆源区萃取的成矿物质汇聚在一起,一部分受岩基热的驱使上升成矿.由于流体中成矿元素的浓度强烈依赖于压力,另一部分成矿元素则滞留在难熔残余中形成新的矿源层.当发生岩石圈拆沉作用时,由此矿源层部分熔融形成的斑岩岩浆将相对富含成矿物质,导致碰撞造山带第二次成矿作用大爆发.  相似文献   
155.
DynamicalProcesandGenesisofLateTriasicSedimentFilinginOrdosBasin*JiaoYangquanLuZongshengZhuangXinguoYangShigongFacultyofEarth...  相似文献   
156.
Abstract The Palaeo-Tethyan suture separates regions characterized by two fundamentally different tectonic styles in the structure of the Tethysides. North of the suture in Iran, Turkmenistan, Afghanistan, Tadjikistan, Kirgizstan, Uzbekistan, Kazakhstan and large parts of the Russian Federation and China, orogenic development is characterized by very large subduction-accretion complexes developed since the late Proterozoic. Magmatic arc axes migrated radially outwards from the 'Old Vertex of Eurasia' and consolidated the accretionary prisms into a 'basement complex' dominated by a pelitic composition. In such orogens, called the 'Turkic-type' after the dominant ethnic population of Central Asia, ophiolites are unreliable indicators of sutures, because they are present throughout the 'basement' as in-faulted shreds and rarely as nappes. By contrast, south of the Palaeo-Tethyan suture, orogeny was commonly characterized by a Sumatra- or Andean-type continental margin arc (e.g. the Transhimalaya arc) that in places became an island arc by back-arc basin rifting (e.g. the Black Sea behind the Rhodope-Pontide fragment) and later collided with an Atlantic- (as in the Himalaya) or California-type (as in the Alps) continental margin to create Alpine- or Himalayan-type orogenic belts. Turkic-type orogenic belts result from the exaggeration of the Himalayan-type as a result of the subduction of very large oceanic areas that contain great amounts of sediment. They contribute to the enlargement and also possibly the growth of the continental crust which has a composition more silicic than basalt. The Palaeo-Tethyan suture is thus a line across which the rate of continental enlargement by subduction-accretion changed dramatically.  相似文献   
157.
造山带的伸展作用及其地壳演化意义   总被引:6,自引:1,他引:6  
造山带的伸展作用大致可以分为两种类型:(1)喜马拉雅型伸展,伸展限于上地壳,表现为规模有限的伸展断层,发生于俯冲—碰撞阶段;(2)科迪勒拉型伸展,整个地壳发生伸展,涉及拆离断层、沉积盆地、变质核杂岩的形成,发生于碰撞后阶段。对加厚地壳的热力学模拟,可以解释造山带挤压终止到伸展开始的时序与岩浆活动的关系。喜马拉雅型伸展伴随高压变质作用,并使变质岩系近等温减压;科迪勒拉型伸展与高温变质作用关系密切,伴随花岗质岩体的侵位,并使变质岩系近等温减压之后近等压冷却。  相似文献   
158.
Described half a century ago, the Galiléia tonalite represents a milestone in the discovery of plate margin magmatic arcs in the Araçuaí-Ribeira orogenic system (southeastern Brazil). In the 1990's, analytical studies on the Galiléia tonalite finally revealed the existence of a Late Neoproterozoic calc-alkaline magmatic arc in the Araçuaí orogen. Meanwhile, the name Rio Doce magmatic arc was applied to calc-alkaline plutons found in the Araçuaí-Ribeira boundary. After those pioneer studies, the calc-alkaline plutons showing a pre-collisional volcanic arc signature and age between 630 Ma and 585 Ma have been grouped in the G1 supersuite, corresponding to the Rio Doce arc infrastructure. Here, we revisit the Rio Doce arc with our solid field knowledge of the region and a robust analytical database (277 lithochemical analyses, and 47 U–Pb, 53 Sm–Nd, 25 87Sr/86Sr and 7 Lu–Hf datasets). The G1 supersuite consists of regionally deformed, tonalitic to granodioritic batholiths and stocks, generally rich in melanocratic to mesocratic enclaves and minor gabbroic to dioritic plutons. Gabbroic to dioritic enclaves show evidence of magma mixing processes. The lithochemical and isotopic signatures clearly reveal a volcanic arc formed on a continental margin setting. Melts from a Rhyacian basement form the bulk of the magma produced, whilst gabbroic plutons and enclaves record involvement of mantle magmas in the arc development. Tonalitic stocks (U–Pb age: 618–575 Ma, εNd(t): −5.7 to −7.8, Nd TDM ages: 1.28–1.68 Ga, 87Sr/86Sr(t): 0.7059–0.7118, and εHf(t): −5.2 to −11.7) form the northernmost segment of the Rio Doce arc, which dies out in the ensialic sector of the Araçuaí orogen. At arc eastern and central zones, several batholiths (e.g., Alto Capim, Baixo Guandu, Galiléia, Muniz Freire, São Vítor) record a long-lasting magmatic history (632–580 Ma; εNd(t): −5.6 to −13.3; Nd TDM age: 1.35–1.80 Ga; 87Sr/86Sr(t): 0.7091–0.7123). At arc western border, the magmatic evolution started with gabbro-dioritic and tonalitic plutons (e.g., Chaves pluton, U–Pb age: 599 ± 15 Ma, εNd(t): −4.8 to −6.8, Nd TDM ages: 1.48–1.68 Ga, 87Sr/86Sr(t): 0.7062–0.7068, and εHf(t): −4.3 to −9.7; and Brasilândia pluton, U–Pb age: 581 ± 11 Ma, εNd(t): −8.2 to −10.2, Nd TDM ages: 1.63–1.68 Ga, 87Sr/86Sr(t): 0.7088–0.7112, εHf(t): −12.3 to −14.9), followed by late granodioritic intrusions (e.g., Guarataia pluton, U–Pb age: 576 ± 9 Ma, εNd(t): −12.52 to −13.11, Nd TDM age: 1.74–2.06 Ga, 87Sr/86Sr(t): 0.7104–0.7110, εHf(t): −12.9 to −21.6). The Muriaé batholith (U–Pb age: 620–592 Ma, εNd(t): −8.2 to −13.6, Nd TDM age: 1.41–1.88 Ga) and the Conceição da Boa Vista (586 ± 7 Ma) and Serra do Valentim (605 ± 8 Ma) stocks represent a segment of the Rio Doce arc correlated to the Serra da Bolívia and Marceleza complexes, making the link between the Araçuaí and Ribeira orogenic domains. We suggest three phases of arc development: i) eastward migration of arc front (632–605 Ma), ii) widespread magma production in the whole arc (605–585 Ma), and iii) late plutonism in the western arc region (585–575 Ma). Usual processes of volcanic arc development, like subduction of oceanic lithosphere under a continental margin, followed by asthenosphere ascent related to slab retreating and break-off may explain the Rio Doce arc evolution.  相似文献   
159.
阿尔泰造山带广泛分布各种变质沉积岩并发育典型递增变质带,变质沉积岩变质之前的沉积时代与物源特征对于限定成岩历史以及造山带演化具有重要意义。文章对采自阿勒泰组变质带中石英岩夹层样品进行了岩相学分析并采用LA-ICP-MS方法对其碎屑锆石进行了U-Pb年代学分析。共获得100个谐和或近于谐和的碎屑锆石年龄,表面年龄分布范围为(443±5)Ma至(2682±19)Ma。碎屑锆石年龄主要集中在寒武纪(486~540 Ma)并具有527~535 Ma的年龄峰值,可能源于区域内同时代的岩浆活动。新元古代年龄约占1/4,少量锆石具有古中元古代甚至太古宙年龄。结合年轻碎屑锆石年龄以及直接侵入该变质带中的英云闪长岩年龄可确定石英岩原岩的沉积时限为早志留世—早泥盆世,其后发生变质作用。古老碎屑锆石在该地区缺乏对应的岩石,可能源于区内隐伏的古老基底岩石或邻区古老陆块。  相似文献   
160.
Medium‐temperature ultrahigh pressure (MT‐UHP) eclogites from the south Dabie orogen, as represented by samples from the Jinheqiao, Shuanghe and Bixiling areas, consist of garnet, omphacite, phengite, epidote, hornblendic amphibole, quartz/coesite and rutile with or without kyanite and talc. Garnet is mostly anhedral and unzoned, but a few porphyroblasts are weakly zoned with core–mantle increasing grossular (Xgr) and decreasing pyrope (Xpy) contents. Garnet compositions are closely correlated with the bulk compositions. For instance, the Xpy and Xgr contents are positively correlated with the bulk MgO and CaO contents. Phengite is occasionally zoned with core–rim deceasing Si content, and phengite grains as inclusions in garnet show higher Si than in the matrix, suggesting differently resetting during post‐peak stages. The maximum Si contents are mostly 3.60–3.63 p.f.u. for the three areas. Pseudosections calculated using THERMOCALC suggest that the MT‐UHP eclogites should have a peak assemblage of garnet + omphacite + lawsonite + phengite + coesite in most rocks of higher MgO content. In this assemblage, the Xpy in garnet mostly depends on bulk compositions, whereas the Xgr in garnet and the Si contents in phengite regularly increase, respectively, as temperature and as pressure rise, and thus, can provide robust thermobarometric constraints. Using the Xgr and Si isopleths in pseudosections, the peak P–T conditions were estimated to be 40 kbar/730 °C for the Jinheqiao, 41 kbar/726 °C for the Shuanghe, and 37–52 kbar and 700–830 °C for the Bixiling eclogites. Some eclogites with higher FeO are predicted to have a peak assemblage of garnet + omphacite + coesite ± phengite without lawsonite, where the garnet and phengite compositions highly depend on bulk compositions and generally cannot give available thermobarometric constraints. Decompression of the eclogites with lawsonite in the peak stage is inferred to be accompanied with cooling and involves two stages: an early‐stage decompression is dominated by lawsonite dehydration, resulting in increase in the mode of anhydrous minerals, or further eclogitization, and formation of epidote porphyroblasts and kyanite‐bearing quartz veins in eclogite. As lawsonite dehydration can facilitate evolution of assemblages under fluid‐present conditions, it is difficult to recover real peak P–T conditions for UHP eclogites with lawsonite. This may be a reason why the P–T conditions estimated for eclogites using thermobarometers are mostly lower than those estimated for the coherent ultramafic rocks, and lower than those suggested from the inclusion assemblages in zircon from marble. A late‐stage decompression is dominated by formation of hornblendic amphibole and plagioclase with fluid infiltration. The lawsonite‐absent MT‐UHP eclogites have only experienced a decompression metamorphism corresponding to the later stage and generally lack the epidote overprinting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号