首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   708篇
  免费   149篇
  国内免费   224篇
测绘学   1篇
大气科学   6篇
地球物理   47篇
地质学   1007篇
海洋学   6篇
天文学   1篇
综合类   5篇
自然地理   8篇
  2025年   1篇
  2024年   22篇
  2023年   12篇
  2022年   14篇
  2021年   23篇
  2020年   27篇
  2019年   21篇
  2018年   31篇
  2017年   26篇
  2016年   28篇
  2015年   38篇
  2014年   30篇
  2013年   57篇
  2012年   90篇
  2011年   33篇
  2010年   29篇
  2009年   51篇
  2008年   37篇
  2007年   35篇
  2006年   40篇
  2005年   38篇
  2004年   46篇
  2003年   30篇
  2002年   30篇
  2001年   37篇
  2000年   22篇
  1999年   27篇
  1998年   37篇
  1997年   29篇
  1996年   29篇
  1995年   13篇
  1994年   16篇
  1993年   13篇
  1992年   18篇
  1991年   21篇
  1990年   7篇
  1989年   5篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
排序方式: 共有1081条查询结果,搜索用时 15 毫秒
951.
    
The Mesozoic lithospheric mantle beneath the North China craton remains poorly constrained relative to its Palaeozoic and Cenozoic counterparts due to a lack of mantle xenoliths in volcanic rocks. Available data show that the Mesozoic lithospheric mantle was distinctive in terms of its major, trace element, and isotopic compositions. The recent discovery of mantle peridotitic xenoliths in Late Cretaceous mafic rocks in the Jiaodong region provides an opportunity to further quantify the nature and secular evolution of the Mesozoic lithospheric mantle beneath the region. These peridotitic xenoliths are all spinel-facies nodules and two groups, high-Mg# and low-Mg# types, can be distinguished based on textural and mineralogical features. High-Mg# peridotites have inequigranular textures, high Mg# (up to 92.2) in olivines, and high Cr# (up to 55) in spinels. Clinopyroxenes in the high-Mg# peridotites are generally LREE-enriched ((La/Yb)N>1) with variable REE concentrations, and have enriched Sr–Nd isotopic compositions (87Sr/86Sr = 0.7046–0.7087; 143Nd/144Nd = 0.5121–0.5126). We suggest that the high-Mg# peridotites are fragments of the Archaean and/or Proterozoic lithospheric mantle that underwent extensive interaction with both carbonatitic and silicate melts prior to or during Mesozoic time. The low-Mg# peridotites are equigranular, are typified by low Mg# ( < 90) in olivines, and by low Cr# ( < 12) in spinels. Clinopyroxenes from low-Mg# peridotites have low REE abundances (ΣREE = 12 ppm), LREE-depleted REE patterns ((La/Yb)N < 1), and depleted Sr–Nd isotopic features, in contrast to the high-Mg# peridotites. These geochemical characteristics suggest that the low-Mg# peridotites represent samples from the newly accreted lithospheric mantle. Combined with the data of mantle xenoliths from the Junan and Daxizhuang areas, a highly heterogeneous, secular evolution of the lithosphere is inferred for the region in Late Cretaceous time.  相似文献   
952.
    
《International Geology Review》2012,54(14):1597-1634
The Miocene Chalcatzingo trondhjemitic volcanic field, sited along the southern margin of the Trans-Mexican Volcanic Belt, is a newly discovered locality with deep-seated crustal xenoliths that provide fundamental petrologic information on the nature of the unexposed metamorphic basement. The volcanic field lies along the eastern edge of the Cretaceous Guerrero-Morelos platform, which juxtaposes the Guerrero and Mixteco terranes of southern Mexico. Xenoliths consist of high temperature to ultra-high temperature metapelites as well as mafic and quartzofeldspathic gneisses, all of which show evidence of multiple granulite to amphibolite facies metamorphism and ductile deformation. A detailed petrologic study of representative xenoliths indicates a metamorphic evolution that apparently followed a clockwise pressure–temperature path leading from biotite-sillimanite1/kyanite(?)-quartz assemblages (M1) to the assemblage plagioclase-garnet-sillimanite2-rutile/ilmenite (M2) with a peak at ~9–11 kbar and >870°C. These conditions were followed by rapid uplift to <6 kbar and >800°C, which produced the decompression assemblage spinel-cordierite-sillimanite3-corundum ± orthopyroxene ± quartz (M3) before shallow emplacement of the xenolith-bearing trondhjemitic magma. Three possible sources for the xenoliths are considered: (1) early Mesozoic metasediments buried in the middle crust; (2) Precambrian lower crust; and (3) subducted Cenozoic sediments trapped in the mantle wedge. Based on the deep-seated, polymetamorphic nature of the xenoliths, the Nd depleted mantle model age of an orthogneissic xenolith, and on regional tectonostratigraphic considerations, we suggest that the xenolith source was Proterozoic continental crust. Although old zircon inheritance in the host trondhjemite is minimal, it may be explained by a lack of interaction of the magma with the traversed lithosphere. Studies of Palaeogene shallow intrusions exposed 140 km west of Chalcatzingo in the Guerrero terrane (Pepechuca plug) and 80 km southeast of that place in the Mixteco terrane (Puente Negro dikes) reveal the presence of similar very high-grade aluminous xenoliths. However, these magmas were probably generated by partial melting of Triassic–Jurassic metasediments of the Guerrero terrane underplated by basaltic magmas in Jurassic–earliest Cretaceous times or from Precambrian crust assimilated by underplated mafic magmas of Oligocene age, respectively.  相似文献   
953.
Post-orogenic mafic rocks from Northeast China consist of swarms of dolerite dikes. We report a new U–Pb zircon age, as well as whole-rock geochemical and Sr–Nd–Hf isotopic data. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb zircon analysis yielded an age of 210.3 ± 1.5 million years (i.e. Triassic) for these mafic dikes. Most Dalian mafic rocks exhibit low K2O + Na2O contents, and span the border between alkaline and calc-alkaline rock associations in the total alkali–silica diagram. The investigated dikes are also characterized by relatively high (87Sr/86Sr)i ratios (0.7061–0.7067) and negative ?Nd (t) (?4.7 to??4.3) and ?Hf (t) values (?4.1 to??1.1), implying that they were derived from an enriched lithospheric mantle source. The mafic dikes are characterized by relatively low MgO (4.65–5.44 wt.%), Mg# (41–44), and compatible element content [such as Cr (89.9–125 ppm) and Ni (56.7–72.2 ppm)], which are the features of an evolved mafic magma. No evidence supports the idea that the mafic rocks were affected by significant assimilation or crustal contamination during emplacement. We conclude that the dolerites formed in a post-orogenic extensional setting, related to lithospheric delamination or ‘collapse’ of the Central Asian Orogenic Belt (CAOB), also termed the Xingmeng Orogenic Belt in China.  相似文献   
954.
Silica‐undersaturated, sapphirine‐bearing granulites occur in a large number of localities worldwide. Such rocks have historically been under‐utilized for estimating PT evolution histories because of limited experimental work, and a consequent poor understanding of the topology and PT location of silica‐undersaturated mineral equilibria. Here, a calculated PT projection for sapphirine‐bearing, silica‐undersaturated metapelitic rock compositions is constructed using THERMOCALC for the FeO‐MgO‐Al2O3‐SiO2 (FMAS) and KFMASH (+K2O + H2O) chemical systems, allowing quantitative analysis of silica‐undersaturated mineral assemblages. This study builds on that for KFMASH sapphirine + quartz equilibria [Kelsey et al. (2004) Journal of Metamorphic Geology, vol. 22, pp. 559–578]. FMAS equilibria are significantly displaced in PT space from silicate melt‐bearing KFMASH equilibria. The large number of univariant silica‐undersaturated KFMASH equilibria result in a PT projection that is topologically more complex than could be established on the basis of experiments and/or natural assemblages. Coexisting sapphirine and silicate melt (with or without corundum) occur down to c. 900 °C in KFMASH, some 100 °C lower than in silica‐saturated compositions, and from pressures of c.≤1 to ≥12 kbar. Mineral compositions and composition ranges for the calculated phases are consistent with natural examples. Bulk silica has a significant effect on the stability of sapphirine‐bearing assemblages at a given PT, resulting in a wide variety of possible granulite facies assemblages in silica‐undersaturated metapelites. Calculated pseudosections are able to reproduce many naturally occurring silica‐undersaturated assemblages, either within a single assemblage field or as the product of a PT trajectory crossing several fields. With an understanding of the importance of bulk composition on sapphirine stability and textural development, silica‐undersaturated assemblages may be utilized in a quantitative manner in the detailed metamorphic investigation of high‐grade terranes.  相似文献   
955.
High‐pressure (HP) granulites and eclogitized metagabbro are exposed along an orogen‐parallel high‐P belt that was developed at c. 1050–1020 Ma in the NE Grenville Province. Among these rocks, mafic granulites derived from a Labradorian anorthosite suite of the Lelukuau terrane contain garnet, Al‐Na diopside, and, depending on bulk composition, plagioclase and kyanite. Moreover, the distribution of phases is influenced by the original igneous texture. For instance, in high XMgO leucocratic varieties, garnet porphyroblasts nucleated together with kyanite in An‐rich cores of plagioclase domains whereas in low XMgO rocks garnet occurs together with clinopyroxene within formerly igneous ferromagnesian domains and kyanite is missing. In contrast, garnet pseudomorphs after igneous plagioclase in melanocratic varieties display evidence of earlier corona development. Metamorphic textures are consistent with a two stage evolution: (a) development of garnet and Al‐Na‐diopside (Cpx1) under high‐P metamorphic conditions, concomitant with elimination of plagioclase in the mesocratic to melanocratic varieties; and (b) partial loss of Al‐Na from Cpx1 resulting in production of new andesitic plagioclase, and growth of new clinopyroxene (Cpx2) after garnet and quartz in leucocratic to mesocratic rocks consistent with decompression. Widespread equilibrium textures between garnet‐Pl2‐Cpx2 and/or reset Cpx1 are consistent with development at the thermal peak. Estimated P–T conditions for the presumed thermal peak fall in the range 1500–1800 MPa and 800–900 °C and are comparable to those recorded by eclogitized gabbros from other parts of the high‐P belt of the NE Grenville province. Low jadeite content of clinopyroxene from the HP granulites is attributed to the low bulk Na2O/(Na2O + CaO) of these rocks relative to common basaltic compositions. Scarcity of apparent retrograde textural overprint in both the HP granulites and the eclogites suggests fast subsequent cooling, consistent with extrusion of the high‐P belt towards the foreland shortly after the metamorphic peak.  相似文献   
956.
The Alpine belt in Corsica (France) is characterized by the occurrence of stacked tectonic slices derived from the Corsica/Europe continental margin, which outcrop between two weakly or non‐metamorphic tectonic domains: the ‘autochthonous’ domain of the Hercynian basement to the west and the Balagne Nappe (ophiolitic unit belonging to the ‘Nappes supérieures’) to the east. These slices, including basement rocks (Permian granitoids and their Palaeozoic host rocks), Late Carboniferous–Permian volcano‐sedimentary deposits, coarse‐grained polymict breccias (Volparone Breccia) and Middle Eocene siliciclastic turbidite deposits, were affected by a polyphase deformation history of Alpine age, associated with a well‐developed metamorphic recrystallization. This study provides new quantitative data about the peak of metamorphism and the retrograde P–T path in the Alpine Corsica: the tectonic slices of Volparone Breccia from the Balagne region (previously regarded as unmetamorphosed) were affected by peak metamorphism characterized by the phengite + chlorite + quartz ± albite assemblage. Using the chlorite‐phengite local equilibria method, peak metamorphic P–T conditions coherent with the low‐grade blueschist facies are estimated as 0.60 ± 0.15 GPa and 325 ± 20 °C. Moreover, the retrograde P–T path, characterized by a decrease of pressure and temperature, is evidence of the first stage of the exhumation path from the peak metamorphic conditions to greenschist facies conditions (0.35 ± 0.06 GPa and 315 ± 20 °C). The occurrence of metamorphic peak at high‐pressure/low‐temperature (HP/LT) conditions is evidence of the fact that these tectonic slices, derived from the Corsica/Europe continental margin, were deformed and metamorphosed in the Alpine subduction zone during their underplating at ~20 km of depth into the accretionary wedge and were subsequently juxtaposed against the metamorphic and non‐metamorphic oceanic units during a complex exhumation history.  相似文献   
957.
The Mesoarchaean Tasiusarsuaq terrane of southern West Greenland consists of Tonalite–trondhjemite–granodiorite gneisses and, locally, polymetamorphic mafic and ultramafic rocks. The terrane experienced medium‐pressure granulite facies conditions during M1A in the Neoarchean, resulting in the development of two‐pyroxene melanosome assemblages in mafic granulites containing garnet‐bearing leucosome. Reworking of these rocks during retrogression introduced garnet to the melanosome in the form of overgrowths, coronas and grain necklaces that separate the mafic minerals from plagioclase. NCFMASHTO pseudosection modelling constrains the peak metamorphism during M1A to ~850 °C and 7.5 kbar at fluid‐saturated conditions. Following M1A, the rocks retained their M1A H2O content and became fluid‐undersaturated as they underwent near‐isobaric cooling to ~700 °C and 6.5–7 kbar, prior to reworking during M1B. These low H2O contents allowed for the formation of garnet overgrowths and coronas during M1B. The stability of garnet is greatly increased to lower pressure and temperature in fluid‐absent, fluid‐undersaturated mafic rocks, indicating that fluid and melt loss during initial granulite facies metamorphism is essential for the introduction of garnet, and the formation of garnet coronas, during retrogression. The occurrence of garnet coronas is consistent with, but not unique to, near‐isobaric cooling paths.  相似文献   
958.
The Wajilitag igneous complex is part of the early Permian Tarim large igneous province in NW China, and is composed of a layered mafic–ultramafic intrusion and associated syenitic plutons. In order to better constrain its origin, and the conditions of associated Fe–Ti oxide mineralization, we carried out an integrated study of mineralogical, geochemical and Sr–Nd–Hf isotopic analyses on selected samples. The Wajilitag igneous rocks have an OIB-like compositional affinity, similar to the coeval mafic dykes in the Bachu region. The layered intrusion consists of olivine clinopyroxenite, coarse-grained clinopyroxenite, fine-grained clinopyroxenite and gabbro from the base upwards. Fe–Ti oxide ores are mainly hosted in fine-grained clinopyroxenite. Forsterite contents in olivines from the olivine clinopyroxenite range from 71 to 76 mol%, indicating crystallization from an evolved magma. Reconstructed composition of the parental magma of the layered intrusion is Fe–Ti-rich, similar to that of the Bachu mafic dykes. Syenite and quartz syenite plutons have εNd(t) values ranging from +1.4 to +2.9, identical to that for the layered intrusion. They may have formed by differentiation of underplated magmas at depth and subsequent fractional crystallization. Magnetites enclosed in olivines and clinopyroxenes have Cr2O3 contents higher than those interstitial to silicates in the layered intrusion. This suggests that the Cr-rich magnetite is an early crystallized phase, whereas interstitial magnetite may have accumulated from evolved Fe–Ti-rich melts that percolated through a crystal mush. Low V content in Cr-poor magnetite (<6600 ppm) is consistent with an estimate of oxygen fugacity of FMQ + 1.1 to FMQ + 3.5. We propose that accumulation of Fe–Ti oxides during the late stage of magmatic differentiation may have followed crystallization of Fe–Ti-melt under high fO2 and a volatile-rich condition.  相似文献   
959.
R. Y. Zhang    J. G. Liou  W. G. Ernst 《Island Arc》1995,4(4):293-309
Abstract Altered quartz-rich and nearly quartz-free eclogitic rocks and completely retrograde quartz-rich garnet amphibolites occur as blocks or lenses in gneisses at Weihai, northeastern tip of the Sulu ultrahigh-P belt. Eclogitic rocks with assemblage garnet ± clinopyroxene ± coesite + rutile have experienced three-stage metamorphic events including ultrahigh-pressure eclogite, granulite and amphibolite facies. Granulite metamorphic event is characterized by formation of the hypersthene + salite + plagioclase ± hornblende corona between garnet and quartz + clinopyroxene. P-T conditions for the three-stage recrystallization sequence are 840 ± 50°C, >28 kbar, about 760±50°C, 9 kbar, and ~650°C, <8 kbar respectively. Most country rock gneisses contain dominant amphibolite-facies assemblages; some garnet-bearing clinopyroxene gneisses recrystallized under granulite-facies conditions at about 740±50°C and 8.5 kbar; similar to granulite-facies retrograde metamorphism of the enclosed eclogitic blocks. Minor cale-silicate lenses within gneisses containing an assemblage grossular + salite + titanite + quartz with secondary zoisite and plagioclase may have formed within a large pressure range of 14-35 kbar. Eclogitic boudins and quartzo-feldspathic country rocks may have experienced coeval in situ UHP and subsequent retrograde metamorphism. The established nearly isothermal decompression P-T path suggests that this area may represent the interior portion of a relatively large subducted sialic block. The recognized UHP terrane may extend eastward across the Yellow Sea to the Korean Peninsula.  相似文献   
960.
In this work, a new separation–preconcentration method was developed for the determination of trace amounts of Cu(II), Ni(II), and Fe(III) by flame atomic absorption spectrometry (FAAS). Analytes were complexed by using zincon (2‐[2‐[alpha(2‐hydroxy‐5‐sulfophenylazo) benzylidene] hydrazino] benzoic acid sodium salt). The analyte ions were quantitatively adsorbed on a Diaion HP‐20 resin at pH 5. The retained metal ions on the resin were eluted by acetone. The analytical parameters such as pH of the sample, eluent type and volume, sample volume, and flow rates of the solution and the eluent were investigated. The influences of concomitant ions on the recoveries of the analytes were also examined. The instrumental detection limits for the analytes after application of the presented solid‐phase extraction procedure were in the range of 0.72–1.41 µg/L. The validation of the presented procedure was checked by analyzing certified reference material of SRM1515 Apple Leaves. The procedure was performed by analyzing some spice samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号