首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   69篇
  国内免费   139篇
测绘学   1篇
大气科学   6篇
地球物理   23篇
地质学   564篇
海洋学   5篇
天文学   1篇
综合类   3篇
自然地理   5篇
  2024年   3篇
  2023年   2篇
  2021年   9篇
  2020年   9篇
  2019年   12篇
  2018年   15篇
  2017年   11篇
  2016年   13篇
  2015年   18篇
  2014年   13篇
  2013年   26篇
  2012年   33篇
  2011年   9篇
  2010年   17篇
  2009年   29篇
  2008年   21篇
  2007年   20篇
  2006年   31篇
  2005年   17篇
  2004年   25篇
  2003年   20篇
  2002年   22篇
  2001年   25篇
  2000年   16篇
  1999年   22篇
  1998年   31篇
  1997年   21篇
  1996年   22篇
  1995年   11篇
  1994年   14篇
  1993年   10篇
  1992年   18篇
  1991年   17篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
排序方式: 共有608条查询结果,搜索用时 203 毫秒
71.
本文在湖南道县虎子岩地区采集了碱性玄武岩、橄榄辉长岩和基性麻粒岩捕虏体。碱性玄武岩的斑晶为橄榄石(10%~15%),岩石K2O含量为2.88%~3.51%,Mg#值为80,具有洋岛玄武岩的微量元素特征,岩石具有富集的氧同位素组成(7.8‰~11.0‰),可能是其上升到地表后由碳酸盐岩组分的加入及后期风化蚀变作用造成的,其相对均一且为负的εNd(t)值和靠近EMⅡ地幔端员的特点,指示了该玄武岩是拉张构造环境下富集地幔部分熔融的产物。橄榄辉长岩具有弱富集的LREE(La/Yb)N=2.5~3.0)、弱的Eu正异常(δEu=1.03~1.06),其Sr-Nd同位素组成更靠近EMⅡ地幔端员,87Sr/86Sr比值、εNd(t)值及Nd模式年龄均高于碱性玄武岩,说明橄榄辉长岩是先形成的上述玄武岩浆在未到达地表之前局部发生结晶作用后形成的。基性麻粒岩捕虏体具较强的正Eu异常(δEu=1.42~4.41),其重稀土元素含量出现明显的分组特征,强烈亏损U、Th和Nb、Ta、Zr、Hf、Ti等高场强元素,同时Sr-Nd同位素组成显示其具有壳幔混合的特征。本文结合已有研究结果,探讨了岩浆起源和演化,以及与古太平洋板片俯冲有关的构造环境转换。  相似文献   
72.
王浩铮  张华锋  翟明国 《岩石学报》2015,31(6):1694-1710
高级变质岩的变质历史是反演地壳构造-热事件的重要依据,然而高温扩散和重结晶作用能够改造造岩矿物中的主量元素分布,这对峰期变质温压条件的反演产生很不利的影响。相对于主量元素,微量元素,尤其是离子半径较大的REE,由于其在晶格中的扩散速率远小于主量元素,在高级叠加变质过程有可能记录前期变质作用。本文以胶北地体的高压基性麻粒岩为研究对象,通过详细的岩相学和矿物化学分析,初步解析了变质重结晶过程中的矿物微量元素再分配特征及其对变质作用的指示意义。岩相学上的证据表明这些样品经历了麻粒岩相变质和后期重结晶作用。单矿物的原位化学成分分析,峰期矿物石榴石、单斜辉石的主量元素Mg、Fe、Ca等二价阳离子分布均一,但部分稀土元素及微量元素则表现出钟形剖面环带分布,暗示主量元素遭受到成份扩散及重结晶所致的元素再分配,微量元素可记录峰期历史。结合主、微量元素温压计,我们分别估算了胶东基性高压麻粒岩的峰期(828℃、1.27GPa)和中压麻粒岩相退变质温压条件(810~840℃、0.6~1.0GPa),并推测其后期经历过角闪岩相退变质叠加。结合前人的年代学工作,我们认为该基性麻粒岩经历了近等温快速减压的变质历史。  相似文献   
73.
Some granulites from the Amessmessa area (south In Ouzzal unit, Hoggar) contain the peak assemblage gedrite+garnet+sillimanite+quartz that was used to estimate the P–T conditions of metamorphism. The rocks developed symplectites and corona textures by the breakdown of the primary paragenesis to orthopyroxene, cordierite and spinel. The successive parageneses formed in separate microdomains according to a clockwise P–T path. Geothermometry, geobarometry and phase diagram calculations indicate that the textures formed by decompression and cooling from 7–9 kbar and 850–900°C to 3.5–4.5 kbar and 700–800°C. This P–T evolution is consistent with low to medium aH2O, between 0.4 and 0.7, and is similar to the metamorphic conditions deduced in Al–Mg granulites from the north of In Ouzzal.  相似文献   
74.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   
75.
Abstract High-pressure granulite-facies gneisses in the NE Ox inlier in NW Ireland have undergone extensive Caledonian retrogression. In the local area of Slishwood, however, reworking was negligible and the gneisses (psammites, semipelites, pelites, metabasites and ultramafites) preserve evidence of P–T changes at high grade which mainly post-date pre-Caledonian polyphase deformation. Temperatures reached 850–900°C (based on garnet-clinopyroxene geothermometry and the presence of mesoperthite) during and after decompression from earlier eclogite-facies conditions (inferred from textural evidence of plagioclase release in sieve-textured augite). Subsequent cooling at high pressure is inferred from the unequivocal replacement of sillimanite by kyanite.
A Sm–Nd mineral isochron (gt–cpx–plag–WR) of 605 ± 37 Ma is taken to date a point on the cooling path, and confirms the hitherto suspected pre-Caledonian age of the high-grade metamorphism. Geochemical and Sm–Nd isotopic data indicate that the protoliths were probably late Proterozoic arkosic sediments and tholeiites. Following metamorphism they apparently came to reside near the base of the crust where they slowly cooled. The eventual exhumation of these gneisses is attributed to Caledonian crustal imbrication, followed by rapid isostatic recovery.  相似文献   
76.
Abstract The orthopyroxene-clinopyroxene, garnet-orthopyroxene and garnet-clinopyroxene geothermometers, and the garnet-orthopyroxene-plagioclase, garnet-clinopyroxene-plagioclase and anorthite-ferrosilite-grossular-almandine-quartz geobarometers are applied to metabasites and the garnetplagioclase-sillimanite-quartz geobarometer is applied to a metapelite from the Proterozoic Arendal granulite terrain, Bamble sector, Norway. P–T conditions of metamorphism were 7.3 ± 0.5 kbar and 800 ± 60°C.
This terrain shows a regional gradation from the amphibolite facies, into normal LILE content granulite facies rocks and finally strongly LILE deficient granulite facies gneisses. Neither P nor T vary significantly across the entire transition zone. The change in 'grade'parallels the increasing dominance of CO2 over H2O in the fluid phase.
LILE-depletion is not a pre-condition of granulite facies metamorphism: granulites may have either 'depleted'or 'normal'chemistries. The results presented herein show that LILE-deficiency in granulite facies orthogneisses is not necessarily related to variations in either P or T . The important mechanisms in the Arendal terrain were (a) direct synmetamorphic crystallization from magma, with primary LILE-poor mineralogies imposed by the prevailing fluid regime, and (b) metamorphic depletion, involving scavenging of LILEs during flushing by mantle-derived CO2-rich fluids. The latter process is constrained by U–Pb and Rb–Sr isotopic work to have occurred no later than 50 Ma after intrusion of the acid-intermediate gneisses, and was probably associated with contemporary basic magmatism in a tectonic environment similar to a present day cordilleran continental margin.  相似文献   
77.
Coexisting Ca-poor and Ca-rich pyroxenes in granulites at Cape Riche, in the Precambrian Albany-Fraser Province, Western Australia, are dominantly chemically homogeneous within individual samples, suggesting a major episode of equilibration. However, occasional grains in a few samples contain exsolved domains interpreted as relics of an earlier, higher-T assemblage. Pyroxene pairs in ten, presumably isothermal, samples from a restricted area are used to (i) assess the suitability of several versions of the two-pyroxene thermometer for application to metamorphic rocks, and (ii) determine the thermal history of the Cape Riche pyroxenes. The various versions of the two-pyroxene thermometer applied to the well-equilibrated homogeneous pyroxene grains show poor to good precision and yield mean temperatures varying widely from 683° to 893°C, in the following order of increasing T: Lindsley (1983; opx version), 683°± 11°C; Kretz (1982; KD version), 705°± 19°C; Ross & Huebner (1975), 709°± 30°C; Kretz (1982; solvus version), 735°± 24°C; Fonarev & Graphchikov (1982; opx version), <750°C; Lindsley (1983; cpx version), 784°± 40°C; Fonarev & Graphchikov (1982; cpx version), ~820°± 30°C; Wood & Banno (1973), 849°± 16°C; Powell (1978), 854°± 23°C; Wells (1977), 893°± 10°C. Independent T estimates, based on mafic assemblages and garnet-biotite thermometry, suggest that the major episode of metamorphism occurred at 700-800°C (P ~ 5 kbar). Therefore the Wells, Powell, Wood & Banno and Fonarev & Graphchikov (cpx) temperatures are almost certainly too high. In the absence of a more precise independent T estimate it is difficult to assess the relative merits of the results obtained from the remaining versions of the two-pyroxene thermometer, none of which can be unequivocally demonstrated to be seriously in error, though the Lindsley (opx) T is probably too low. Other significant shortcomings evident in the results include the relatively poor precision obtained from the three methods based on purely graphical representation of the augite limb of the solvus (i.e., the Ross & Huebner, Fonarev & Graphchikov (cpx) and Lindsley (cpx) versions), and the apparent dependence of derived T on Mg/Fe2+ ratio for the Powell, Wood & Banno and Lindsley (cpx) methods. For the bulk compositions of exsolved domains, the different versions of the two-pyroxene thermometer yield mean temperatures 23° to 82°C (overall mean, 65°C) higher than for homogeneous grains in the same samples. These exsolved domains are interpreted as relics of a higher-T (peak?) metamorphic assemblage, rather than an igneous precursor.  相似文献   
78.
Granitic magmas migrated through Early Proterozoic middle–lower crust at Mt Hay, central Australia, via a diverse network of narrow structurally controlled channelways, during a period of progressive W–SW-directed thrusting (D1a–D1d). They utilized existing folds, boudins and shear zones, or created new channels by magmatic fracture either parallel to layering or, rarely, in irregular arrays. The magmas rose obliquely, parallel to the plunging (50–60°) regional elongation direction, which was defined by coaxial folds, boudin necks and a strong mineral-elongation lineation. Megacrystic charnockitic magmas migrated through metre-scale conduits during D1a–D1b, but leucosomes were generally restricted to smaller (centimetre-scale) structures that existed throughout the entire deformation history. Thus, D1a/D1b leucosomes were potential feeders of in situ partial melts to the adjacent larger conduits of charnockite magma, thereby providing a pervasive interconnected network that allowed efficient migration of all magma types during the early stages of thrusting. The upper–middle crust of the Anmatjira–Reynolds Range area contains abundant megacrystic granitoid sheets that are of similar age and geochemistry to those at Mt Hay. They are considered to have formed as syntectonic intrusions emplaced during W–SW-directed thrusting, as at Mt Hay, suggesting that granitic magmas formed near the base of the continental crust passed through the mid-lower crustal level (25–30 km) exposed at Mt Hay and accumulated, in batholithic proportions, at shallower crustal levels (12–20 km) such as the Anmatjira–Reynolds Range area. The observations imply that granitoid magmas in the deep crust are capable of pervasive migration through the crust during major compressive, noncoaxial shear deformation. Localization of magmas by sequentially developed, narrow, compressive structures suggests that dilatancy followed successive foliation-forming events, a situation that can occur during steady-state deformation if the effective confining pressures are low, which would be a result of high and possibly variable rates of magma influx. The inferred rapid melt segregation and migration during deformation suggest that large chambers do not form until magma reaches neutral buoyancy in the middle to upper continental crust.  相似文献   
79.
The rocks of the Scourian Complex have been intensively studied, but there is still no consensus as to the conditions of the granulite-facies metamorphism preserved in these rocks. Recent estimates of these conditions fall into two groups, one at 820-920°C and ca. 11 kbar and the second at ca. 1000°C and >12 kbar. Investigation of a variety of rocks shows that the recorded conditions vary with grain-size, with higher-grade conditions recorded by the cores of coarser ( ca. 10 mm) crystals, and lower-grade conditions recorded by the rims of coarser grains and by finer grains. This observation suggests that re-equilibration during recovery of these rocks to the surface has been important which may account for the discrepancy in estimated P-T conditions. Revised estimates of the equilibration conditions of the Scourian Complex of T > 1000°C and P > 8.5 kbar are presented. The conditions suggested for the peak of metamorphism mean that the role of anatexis in the genesis of these rocks must be considered and the nature of the fluid phase thoroughly investigated.  相似文献   
80.
A suite of metapelites, charnockites, calc-silicate rocks, quartzo-feldspathic gneisses and mafic granulites is exposed at Garbham, a part of the Eastern Ghats granulite belt of India. Reaction textures and mineral compositional data have been used to determine the P–T–X evolutionary history of the granulites. In metapelites and charnockites, dehydration melting reactions involving biotite produced quartzofeldspathic segregations during peak metamorphism. However, migration of melt from the site of generation was limited. Subsequent to peak metamorphism at c . 860° C and 8 kbar, the complex evolved through nearly isothermal decompression to 530–650° C and 4–5 kbar. During this phase, coronal garnet grew in the calc-silicates, while garnet in the presence of quartz broke down in charnockite and mafic granulite. Fluid activities during metamorphism were internally buffered in different lithologies in the presence of a melt phase. The P–T path of the granulites at Garbham contrasts sharply with the other parts of the Eastern Ghats granulite belt where the rocks show dominantly near-isobaric cooling subsequent to peak metamorphism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号