全文获取类型
收费全文 | 7423篇 |
免费 | 1253篇 |
国内免费 | 1170篇 |
专业分类
测绘学 | 147篇 |
大气科学 | 631篇 |
地球物理 | 2723篇 |
地质学 | 3881篇 |
海洋学 | 906篇 |
天文学 | 77篇 |
综合类 | 299篇 |
自然地理 | 1182篇 |
出版年
2024年 | 41篇 |
2023年 | 120篇 |
2022年 | 200篇 |
2021年 | 293篇 |
2020年 | 297篇 |
2019年 | 291篇 |
2018年 | 269篇 |
2017年 | 311篇 |
2016年 | 289篇 |
2015年 | 308篇 |
2014年 | 437篇 |
2013年 | 574篇 |
2012年 | 362篇 |
2011年 | 430篇 |
2010年 | 386篇 |
2009年 | 468篇 |
2008年 | 538篇 |
2007年 | 454篇 |
2006年 | 490篇 |
2005年 | 350篇 |
2004年 | 334篇 |
2003年 | 299篇 |
2002年 | 285篇 |
2001年 | 258篇 |
2000年 | 236篇 |
1999年 | 239篇 |
1998年 | 198篇 |
1997年 | 174篇 |
1996年 | 146篇 |
1995年 | 122篇 |
1994年 | 106篇 |
1993年 | 112篇 |
1992年 | 90篇 |
1991年 | 74篇 |
1990年 | 69篇 |
1989年 | 44篇 |
1988年 | 45篇 |
1987年 | 18篇 |
1986年 | 15篇 |
1985年 | 11篇 |
1984年 | 9篇 |
1983年 | 7篇 |
1982年 | 6篇 |
1981年 | 7篇 |
1980年 | 7篇 |
1978年 | 16篇 |
1977年 | 5篇 |
1976年 | 1篇 |
1972年 | 1篇 |
1954年 | 3篇 |
排序方式: 共有9846条查询结果,搜索用时 15 毫秒
81.
在一定来流条件下,张力腿平台(tension leg platform,简称TLP)的立柱后缘出现周期性的交替旋涡脱落,致使立柱受到垂直于来流方向的升力和平行于来流方向的阻力作用,导致TLP产生大幅度往复运动,显著增加平台结构和系泊系统的负载。目前,关于单柱、多柱结构绕流问题的研究较多,但对于TLP绕流特性的研究较少,机理尚存不明确的地方。为研究TLP的绕流力变化情况和流场特征,开展了数值模拟分析。利用计算流体动力学数值模拟软件,基于雷诺平均(RANS)法和分离涡模拟(DES)法对TLP绕流场进行仿真分析,揭示了TLP的绕流特性。结果表明,在3种来流角度和多个折合速度Vr下,TLP绕流的流体力系数存在明显差异,升力系数时域曲线呈现脉动性。TLP的上、下游立柱间存在明显的相互作用,影响了旋涡的形成与发展。TLP的旋涡脱落大多集中在平台固有频率附近,且在Vr=7,来流角度为0°时,升力系数频谱峰值最大,旋涡脱落集中。 相似文献
82.
Dynamic link between the level of ductile crustal flow and style of normal faulting of brittle crust
In a rheologically layered crust, compositional layers have an upper, elasto-plastic part and a lower, viscous one. When broken, the upper elastic part undergoes flexure, which is upward for the foot-wall and downward for the hanging wall. As a consequence of bending, stresses will develop locally that can overcome the strength of the plate and, therefore, impose the migration of active fault. In the lower, viscous part of each compositional layer, rocks can potentially flow. Numerical modelling of the behaviour of a crust made up of two compositional layers, during and following extension, shows that flow can take place not only in the lower crust but also, and more importantly, in the lower part of the upper crust. The ability of crustal rocks to flow influences the style and kinematics of rifted regions. When no flow occurs, subsidence will affect the extending areas, both hanging wall and foot-wall will subside with respect to an absolute reference frame such as sea level, and there will be a strict proportionality between extension and thinning. In addition, the downward movement of the fault blocks will decrease the local stresses created in the foot-wall and increase those of the hanging wall, thereby imposing a migration of fault towards the hanging wall. This is the behaviour of extensional settings developed on stabilised crust and which evolved in a passive margin. When flow does take place, middle crustal rocks will move towards the rifting zone causing isostatically driven upward movements that will be superimposed on movements associated with crustal and lithospheric thinning. Consequently, fault blocks will move upwards and the crust will show more extension than thinning. The upward movements will decrease the stresses developed in the hanging walls and increase those of the foot-wall. Faults will then migrate towards the foot-wall. Such a mode of deformation is expected in regions with thickened crust and has its most apparent expression in core complexes. 相似文献
83.
含沙浑水体的高速冲击会对海底构筑物造成破坏,在计算浑水体对构筑物的作用力时,黏度是一项重要参数。本文利用落球试验和流变仪测试试验,测定了不同浓度含沙浑水体的黏度,给出其起始黏度与动力作用后的稳定黏度。结果表明:含沙量在大于400g/L时,浑水体为可用赫巴模型描述的非牛顿流体,并可简化为宾汉体;在含沙量小于400g/L时,浑水体仍可用宾汉体模型描述,在忽略较小的初始剪切应力时,可简化为牛顿流体。浓度大于400g/L的浑水体的起始黏度约为稳定黏度的100倍。文中讨论了含沙浑水体起始黏度与稳定黏度在工程计算应用中的适用情况。 相似文献
84.
Yong-Jun Tang Ze-Min Xu Zhen-Chen Shao Zhe Ren Kun Wang Kui Yang Jun-Yao Luo Hai-Yan Gao Lin Tian 《地球表面变化过程与地形》2020,45(4):999-1012
Debris-flow runout is a fascinating process to understand due to its implications for downstream alluvial fans. Based on the propagation-deposition behaviors of the Dongyuege (DYG) debris flow, in Yunnan, the effect of biofilms on channel surfaces on debris-flow runout is investigated in laboratory flumes with two different internal surfaces: surfaces are lined with granite slabs (Model I) and gravel (Model II), respectively. Our results show that biofilms can significantly reduce frictional resistance to flows. They increase flow velocities, slow down the deceleration of the snouts, prolong runout distances, and subsequently extend the areas covered with resulting deposits, thus greatly assisting the propagation of experimental debris flows. Slippery biofilms consisting mainly of diatoms and their extracellular mucus (ECM) reduce the contact friction between the flume-beds and the overlying fluids, and greatly promote the propagation of tested flows. Well-developed biofilms are found on the underwater channel surfaces of the DYG Creek. Acting as lubricating layers, they likely played a key role in the DYG debris-flow runout. Most of the debris transported during the DYG event was deposited on overbanks, and the sediment that caused the disaster was transported to the populated fan region through the stream-bed clad in the thick biofilms. Owing to their impacts on the development and width of the temporary debris dam breach, the stream-bed covered with biofilms became a direct contributor to the debris-flow hazard. Because of the ubiquitous presence of biofilms on mountain stream-bed surfaces, the development of perennial streamflows can be viewed as an indicator of gully susceptibility to debris flows threatening creek fans. The underwater areas of pre-event channel cross-sections should be regarded as slip or low-friction boundaries, and the parts above stream-levels can be viewed as no-slip boundaries. © 2019 John Wiley & Sons, Ltd. 相似文献
85.
Cyrille Flamant Jacques Pelon Bart Brashers Robert A. Brown 《Boundary-Layer Meteorology》1999,93(1):47-73
The internal thermal boundary layer developing over the Mediterranean during a cold-air outbreak associated with a Tramontane event has been studied by means of airborne lidar, in situ sensors, and a modelling approach that consisted of nesting the University of Washington (UW) planetary boundary-layer (PBL) model in an advective zero-order jump model. This approach bypasses some of the deficiencies associated with each model: the absence of the dynamics in the mixed layer for the zero-order jump model and the lack of an inversion at the PBL top for the UW PBL model. Particular attention is given to the parameterization of the entrainment flux at the PBL top. Values of the entrainment closure parameter derived with the model when matching PBL structure observations are much lower than those derived with standard zero-order jump models. They also are in good agreement with values measured in different meteorological situations by other studies. This improvement is a result of the introduction of turbulent kinetic energy production in the mixed layer. 相似文献
86.
Many glaciers in alpine regions are currently rapidly receding and thinning at historically unobserved rates causing changes in the velocity field and in normal and shear stresses affecting the surface expression of structures within the ice. We studied the distribution of brittle and ductile structures at the surface of Pasterze Glacier during a 14-year period by analysing orthophotos and digital elevation models of five stages (1998, 2003, 2006, 2009 and 2012). A structural glaciological mapping key was applied. Normal faults, strike-slip faults, en échelon structures (systematic stepping of fractures), thrust faults, and band ogives were distinguished. Results indicate substantial deceleration and glacier thinning in 1998–2012. Glacier thinning was not homogenous over time related to the uneven distribution of supraglacial debris causing differential ablation or the selective ablation effects of subglacial water channels. Peculiar supraglacial features observed are circular collapse structures with concentric crevasses which form when the ice between the surface and the roof of water channels decreases. The total length of brittle structures increased from 38.4 km to 56.9 km whereas the extent of the glacier tongue decreased by 25%. The fracture density doubled from 0.009 to 0.018 m/m2. Areas of the glacier tongue which were up to 100 m away from the nearest brittle structure increased by 16%. The visual appearance of thrust faults shifted upglacier due to decreasing glacier velocity causing horizontal shortening or due to exhumation of faults that did not previously extend to the surface. A large number of brittle structures are progressively independent from glacier motion. Our study suggests that glacier tongues which are in a state of rapid decay and thinning are prone to fracturing due to normal fault formation and glacier disintegration. Water further increases ablation rates substantially if rather large amounts drain through supra-, en- or subglacial water channels. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. 相似文献
87.
Costanza Di Stefano Alessio Nicosia Vincenzo Pampalone Vincenzo Palmeri Vito Ferro 《水文研究》2019,33(9):1317-1323
In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity distribution. Then, the following steps were carried out for developing the analysis: (a) a relationship (Equation 13 ) between the Γ function of the velocity profile, the rill slope, and the Froude number was calibrated by the available measurements by Jiang et al.; (b) a relationship (Equation 17 ) between the Γ function, the rill slope, the Shields number, and the Froude number was calibrated by the same measurements; and (c) the Darcy–Weisbach friction factor values measured by Jiang et al. were compared with those calculated by the rill flow resistance equation with Γ estimated by Equations 13 and 17 . This last comparison demonstrated that the rill flow resistance equation, in which slope and Shields number, representative of sediment transport effects, are introduced, is characterized by the lowest values of the estimate errors. 相似文献
88.
89.
In this paper, we describe an efficient approach for quantifying uncertainty in two-phase flow applications due to perturbations of the permeability in a multiscale heterogeneous porous medium. The method is based on the application of the multiscale finite element method within the framework of Monte Carlo simulation and an efficient preprocessing construction of the multiscale basis functions. The quantities of interest for our applications are the Darcy velocity and breakthrough time and we quantify their uncertainty by constructing the respective cumulative distribution functions. For the Darcy velocity we use the multiscale finite element method, but due to lack of conservation, we apply the multiscale finite volume element method as an alternative for use with the two-phase flow problem. We provide a number of numerical examples to illustrate the performance of the method. 相似文献
90.
THETHEORETICALSTUDYONTHELAWSOFDRAGREDUCTIONBYAERATIONINOPENCHANNEL1ZHENGYonggang2,FANGDuo3andLIGuifen4ABSTRACTThelawsofdragre... 相似文献